Full metadata record

DC Field Value Language
dc.contributor.authorKim, Daeyoung-
dc.contributor.authorPark, Seongsik-
dc.contributor.authorJeong, Yeonjoo-
dc.contributor.authorKim, Jaewook-
dc.contributor.authorLee, Suyoun-
dc.contributor.authorKwak, Joon Young-
dc.contributor.authorJang, Hyun Jae-
dc.contributor.authorKim, Inho-
dc.contributor.authorKim, Jong-Kook-
dc.contributor.authorPark, Jongkil-
dc.date.accessioned2025-09-22T03:00:52Z-
dc.date.available2025-09-22T03:00:52Z-
dc.date.created2025-09-16-
dc.date.issued2025-06-
dc.identifier.issn1534-4320-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153208-
dc.description.abstractA deep understanding of neuronal circuitry connectivity is essential to replicate biological functions effectively. Inferring neural connectivity considers the cross-correlation of spike timing. Neuromorphic systems utilize online learning algorithms that leverage the temporal correlations of spikes by utilizing spiking neural networks. This research demonstrates real-time, large-scale neural connectivity inference by implementing the presynaptic spike-driven spike-timing-dependent plasticity method on neuromorphic hardware. We validate the capability of the proposed method to perform advanced neuron connectivity inference using synthetic data generated from leaky integrate-and-fire neurons on a multi-scale. Additionally, we analyzed that the proposed method exhibits invariant high inference performance in sparse networks without burst firing, regardless of transmission delay. Finally, we demonstrate the feasibility of the proposed method in real-time neural connectivity inference in actual in vitro or in vivo contexts by conducting neural connectivity inference simulating in a way closely mirroring in vitro conditions through fluorescence imaging signal data.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleReal-Time Large-Scale Neural Connectivity Inference on Spiking Neuromorphic System-
dc.typeArticle-
dc.identifier.doi10.1109/TNSRE.2025.3583057-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Transactions on Neural Systems and Rehabilitation Engineering, v.33, pp.2781 - 2792-
dc.citation.titleIEEE Transactions on Neural Systems and Rehabilitation Engineering-
dc.citation.volume33-
dc.citation.startPage2781-
dc.citation.endPage2792-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001565433100005-
dc.identifier.scopusid2-s2.0-105010592738-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryRehabilitation-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaRehabilitation-
dc.type.docTypeArticle-
dc.subject.keywordPlusTIMING-DEPENDENT PLASTICITY-
dc.subject.keywordPlusFUNCTIONAL CONNECTIVITY-
dc.subject.keywordPlusBRAIN-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusLOIHI-
dc.subject.keywordAuthorGranger causality-
dc.subject.keywordAuthoronline learning-
dc.subject.keywordAuthorspike-timing-dependent plasticity-
dc.subject.keywordAuthorspiking neural networks-
dc.subject.keywordAuthorGranger causality-
dc.subject.keywordAuthoronline learning-
dc.subject.keywordAuthorspike-timing-dependent plasticity-
dc.subject.keywordAuthorspiking neural networks-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE