Full metadata record

DC Field Value Language
dc.contributor.authorJang, Myeongcho-
dc.contributor.authorPark, Kanguk-
dc.contributor.authorLee, Yongheum-
dc.contributor.authorShim, Joon Hyung-
dc.contributor.authorKim, Kwangnam-
dc.contributor.authorYu, Seungho-
dc.date.accessioned2025-09-22T08:30:14Z-
dc.date.available2025-09-22T08:30:14Z-
dc.date.created2025-09-16-
dc.date.issued2025-09-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153215-
dc.description.abstractThe lithium argyrodite sulfide solid electrolyte Li6PS5Cl has attracted considerable interest for all-solid-state batteries owing to its high ionic conductivity, which can be further enhanced through ionic substitution. Although a variety of substitutions have been investigated, thioarsenate argyrodites remain comparatively underexplored. Here, we systematically investigate the phase stability and Li-ion conduction mechanisms in superionic Br-incorporated thioarsenate argyrodites using first-principles calculations and molecular dynamics simulations based on machine learning interatomic potentials (MLIPs). Systematic variation of S/Br site inversion reveals that an optimal degree of anion disorder significantly enhances inter-cage connectivity and facilitates long-range Li-ion diffusion. Configurational entropy serves as an effective quantitative descriptor of anion disorder, exhibiting a strong correlation with ionic conductivity. While greater anion disorder induced by site inversion and higher Br content enhances ionic conductivity up to 50 mS cm-1, it simultaneously reduces structural stability. This trade-off results in an optimal window in which a moderate level of disorder yields conductivities exceeding 20 mS cm-1 while maintaining synthetic feasibility. This work highlights the reliability and efficiency of MLIPs for elucidating ion-transport mechanisms and accelerating the design of novel superionic argyrodites.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleMechanistic insights into superionic thioarsenate argyrodite solid electrolytes via machine learning interatomic potentials-
dc.typeArticle-
dc.identifier.doi10.1039/d5ta05538e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A-
dc.citation.titleJournal of Materials Chemistry A-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusIONIC-CONDUCTIVITY-
dc.subject.keywordPlusLI6PS5X X-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusBR-
dc.subject.keywordPlusCL-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE