Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Jaeyoung-
dc.contributor.authorKwon, Jaehoon-
dc.contributor.authorLee, Junpyo-
dc.contributor.authorKim, Jinwoo-
dc.contributor.authorLee, Young Jun-
dc.contributor.authorLee, Hyunjoo-
dc.contributor.authorKim, Bumjoon J.-
dc.date.accessioned2025-09-30T06:33:01Z-
dc.date.available2025-09-30T06:33:01Z-
dc.date.created2025-09-30-
dc.date.issued2025-11-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153276-
dc.description.abstractBlock copolymer-templated nanostructured carbons (BNCs) represent a new class of porous materials that offer precise control over pore size, connectivity, and architecture through rational polymer design and self-assembly. These structural features enable enhanced mass and ion transport, improve triple-phase boundary formation, and efficient catalyst utilization under practical electrochemical conditions. This Perspective outlines recent advances in BNC synthesis, including solvent-evaporation-induced assembly and emulsion-confined fabrication. The role of pore architecture is examined across key electrochemical systems such as proton exchange membrane fuel cells, metal–air batteries, and carbon dioxide reduction devices, where transport limitations often govern performance. Strategies for tailoring pore structures through molecular-level control of block copolymer templates are discussed, along with challenges related to selective catalyst placement and scalable production. The integration of BNC frameworks into electrochemical systems offers a promising route toward high-performance energy conversion and storage technologies through structure-guided material design.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleBlock Copolymer Templated Nanostructured Carbon Electrodes for Enhancing Mass Transport in Energy Conversion Systems-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202503825-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Energy Materials, v.15, no.44-
dc.citation.titleAdvanced Energy Materials-
dc.citation.volume15-
dc.citation.number44-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105015533952-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusGYROIDAL MESOPOROUS CARBONS-
dc.subject.keywordPlusMETAL-AIR BATTERIES-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusPOROUS CARBON-
dc.subject.keywordPlusCATALYST LAYERS-
dc.subject.keywordPlusRECENT PROGRESS-
dc.subject.keywordPlusCO2 REDUCTION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusSHAPE-
dc.subject.keywordAuthorblock copolymer-templated porous carbons-
dc.subject.keywordAuthorCO2 reduction devices-
dc.subject.keywordAuthorfuel cells-
dc.subject.keywordAuthormetal-air batteries-
dc.subject.keywordAuthornanostructured carbons-
dc.subject.keywordAuthorblock copolymer particles-
Appears in Collections:
KIST Article > Others
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE