Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Jaeyoung-
dc.contributor.authorKwon, Jaehoon-
dc.contributor.authorLee, Junpyo-
dc.contributor.authorKim, Jinwoo-
dc.contributor.authorLee, Young Jun-
dc.contributor.authorLee, Hyunjoo-
dc.contributor.authorKim, Bumjoon J.-
dc.date.accessioned2025-09-30T06:33:01Z-
dc.date.available2025-09-30T06:33:01Z-
dc.date.created2025-09-30-
dc.date.issued2025-09-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153276-
dc.description.abstractBlock copolymer-templated nanostructured carbons (BNCs) represent a new class of porous materials that offer precise control over pore size, connectivity, and architecture through rational polymer design and self-assembly. These structural features enable enhanced mass and ion transport, improve triple-phase boundary formation, and efficient catalyst utilization under practical electrochemical conditions. This Perspective outlines recent advances in BNC synthesis, including solvent-evaporation-induced assembly and emulsion-confined fabrication. The role of pore architecture is examined across key electrochemical systems such as proton exchange membrane fuel cells, metal-air batteries, and carbon dioxide reduction devices, where transport limitations often govern performance. Strategies for tailoring pore structures through molecular-level control of block copolymer templates are discussed, along with challenges related to selective catalyst placement and scalable production. The integration of BNC frameworks into electrochemical systems offers a promising route toward high-performance energy conversion and storage technologies through structure-guided material design.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleBlock Copolymer Templated Nanostructured Carbon Electrodes for Enhancing Mass Transport in Energy Conversion Systems-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202503825-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Energy Materials-
dc.citation.titleAdvanced Energy Materials-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105015533952-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusGYROIDAL MESOPOROUS CARBONS-
dc.subject.keywordPlusMETAL-AIR BATTERIES-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusPOROUS CARBON-
dc.subject.keywordPlusCATALYST LAYERS-
dc.subject.keywordPlusRECENT PROGRESS-
dc.subject.keywordPlusCO2 REDUCTION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusSHAPE-
dc.subject.keywordAuthorblock copolymer particles-
dc.subject.keywordAuthorblock copolymer-templated porous carbons-
dc.subject.keywordAuthorCO2 reduction devices-
dc.subject.keywordAuthorfuel cells-
dc.subject.keywordAuthormetal-air batteries-
dc.subject.keywordAuthornanostructured carbons-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE