Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, Jaeyoung | - |
dc.contributor.author | Kwon, Jaehoon | - |
dc.contributor.author | Lee, Junpyo | - |
dc.contributor.author | Kim, Jinwoo | - |
dc.contributor.author | Lee, Young Jun | - |
dc.contributor.author | Lee, Hyunjoo | - |
dc.contributor.author | Kim, Bumjoon J. | - |
dc.date.accessioned | 2025-09-30T06:33:01Z | - |
dc.date.available | 2025-09-30T06:33:01Z | - |
dc.date.created | 2025-09-30 | - |
dc.date.issued | 2025-09 | - |
dc.identifier.issn | 1614-6832 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153276 | - |
dc.description.abstract | Block copolymer-templated nanostructured carbons (BNCs) represent a new class of porous materials that offer precise control over pore size, connectivity, and architecture through rational polymer design and self-assembly. These structural features enable enhanced mass and ion transport, improve triple-phase boundary formation, and efficient catalyst utilization under practical electrochemical conditions. This Perspective outlines recent advances in BNC synthesis, including solvent-evaporation-induced assembly and emulsion-confined fabrication. The role of pore architecture is examined across key electrochemical systems such as proton exchange membrane fuel cells, metal-air batteries, and carbon dioxide reduction devices, where transport limitations often govern performance. Strategies for tailoring pore structures through molecular-level control of block copolymer templates are discussed, along with challenges related to selective catalyst placement and scalable production. The integration of BNC frameworks into electrochemical systems offers a promising route toward high-performance energy conversion and storage technologies through structure-guided material design. | - |
dc.language | English | - |
dc.publisher | Wiley-VCH Verlag | - |
dc.title | Block Copolymer Templated Nanostructured Carbon Electrodes for Enhancing Mass Transport in Energy Conversion Systems | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/aenm.202503825 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Advanced Energy Materials | - |
dc.citation.title | Advanced Energy Materials | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.scopusid | 2-s2.0-105015533952 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | GYROIDAL MESOPOROUS CARBONS | - |
dc.subject.keywordPlus | METAL-AIR BATTERIES | - |
dc.subject.keywordPlus | FUEL-CELL | - |
dc.subject.keywordPlus | POROUS CARBON | - |
dc.subject.keywordPlus | CATALYST LAYERS | - |
dc.subject.keywordPlus | RECENT PROGRESS | - |
dc.subject.keywordPlus | CO2 REDUCTION | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | PARTICLES | - |
dc.subject.keywordPlus | SHAPE | - |
dc.subject.keywordAuthor | block copolymer particles | - |
dc.subject.keywordAuthor | block copolymer-templated porous carbons | - |
dc.subject.keywordAuthor | CO2 reduction devices | - |
dc.subject.keywordAuthor | fuel cells | - |
dc.subject.keywordAuthor | metal-air batteries | - |
dc.subject.keywordAuthor | nanostructured carbons | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.