Full metadata record

DC Field Value Language
dc.contributor.authorChin, Sang-Hyun-
dc.contributor.authorLee, Daseul-
dc.contributor.authorLee, Donggyu-
dc.contributor.authorKim, Seunghwan-
dc.contributor.authorKang, Byeongjoo-
dc.contributor.authorChung, Kwanghyun-
dc.contributor.authorKim, Tong-Il-
dc.contributor.authorYeon, Jieun-
dc.contributor.authorLee, Su Hwan-
dc.contributor.authorBae, Sang Woo-
dc.contributor.authorKim, Woojae-
dc.contributor.authorPark, Soohyung-
dc.contributor.authorKim, Kwanpyo-
dc.contributor.authorKim, Young-Hoon-
dc.contributor.authorYi, Yeonjin-
dc.date.accessioned2025-09-30T06:33:08Z-
dc.date.available2025-09-30T06:33:08Z-
dc.date.created2025-09-30-
dc.date.issued2025-09-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153277-
dc.description.abstractMetal-organic chalcogenides (MOCs) represent a unique materials platform promising to overcome the respective stability and structural integrity challenges of perovskites and functionalized dichalcogenides. However, their practical application is hindered by slow, multi-day synthesis methods that produce low-quality films. Here, these challenges are addressed with a vapor-assisted solution process that enables the ambient-pressure fabrication of 1D MOC, silver(I) 2-methyl ester benzenethiolate (AgSPhCOOMe), films within 5 min. The resulting dense, pinhole-free AgSPhCOOMe films exhibit a high photoluminescence quantum yield of 37.5%, with bright, broadband emission originating from self-trapped excitons due to the material's strong electron-phonon coupling. This scalable synthesis platform enables the successful integration of these MOCs into light-emitting diodes, demonstrating electroluminescence from this material class. By engineering the charge-transport layers to achieve balanced injection, a maximum external quantum efficiency of approximate to 0.1% is achieved. The in situ photoelectron spectroscopy analysis reveals that a significant electron injection barrier (0.62 eV) remains even in the optimized device, identifying this as the main efficiency bottleneck. Therefore, this work provides a foundational platform for MOC-based devices and a clear roadmap focused on new ligands and interface engineering to realize their full potential as high-performance, solution-processable emitters.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleElectroluminescence From a 1D Metal-Organic Chalcogenide Enabled by a Minute-Scale Facile Synthesis-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202513328-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Science-
dc.citation.titleAdvanced Science-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordAuthorelectroluminescence-
dc.subject.keywordAuthorelectronic structures-
dc.subject.keywordAuthormetal-organic chalcogenides-
dc.subject.keywordAuthorsynthesis-
dc.subject.keywordAuthorvapor deposition-
Appears in Collections:
KIST Article > Others
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE