Full metadata record

DC Field Value Language
dc.contributor.authorPark, Yongsun-
dc.contributor.authorLee, So Yi-
dc.contributor.authorKim, Hae-Yong-
dc.contributor.authorJang, Myeongcho-
dc.contributor.authorKo, Sunho-
dc.contributor.authorOh, Gwangseok-
dc.contributor.authorSeo, Seung-Deok-
dc.contributor.authorYou, Min Jae-
dc.contributor.authorKim, Hanjun-
dc.contributor.authorPin, Minwook-
dc.contributor.authorMonteiro, Robson S.-
dc.contributor.authorYu, Seungho-
dc.contributor.authorNam, Kyung-Wan-
dc.contributor.authorNam, Sang-Cheol-
dc.contributor.authorKwon, Ohmin-
dc.date.accessioned2025-10-01T11:01:33Z-
dc.date.available2025-10-01T11:01:33Z-
dc.date.created2025-09-30-
dc.date.issued2025-09-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153302-
dc.description.abstractEnhancing the energy density of all-solid-state batteries (ASSBs) with lithium metal anodes is crucial, but lithium dendrite-induced short circuits limit fast-charging capability. This study presents a high-power ASSB employing a novel, robust solid electrolyte (SE) with exceptionally high stability at the lithium metal/SE interface, achieved via site-specific Nb doping in the argyrodite structure. Pentavalent Nb incorporation into Wyckoff 48h sites enhances structural stability, as confirmed by neutron diffraction, X-ray absorption spectroscopy, magic angle spinning nuclear magnetic resonance, and density functional theory calculations. While Nb doping slightly reduces ionic conductivity, it significantly improves interfacial stability, suppressing dendrite formation and enabling a full cell capable of charging in just 6 min (10-C rate, 16 mA cm-2). This study highlights, for the first time, that electrochemical stability, rather than ionic conductivity, is key to achieving high-power performance, advancing the commercialization of lithium metal-based ASSBs.-
dc.languageEnglish-
dc.publisherWiley-
dc.titleBoosting the Power Characteristics of All-Solid-State Batteries Through Improved Electrochemical Stability: Site-Specific Nb Doping in Argyrodite-
dc.typeArticle-
dc.identifier.doi10.1002/cey2.70058-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCarbon Energy-
dc.citation.titleCarbon Energy-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105015457389-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusREDOX-
dc.subject.keywordPlusTHIN-
dc.subject.keywordAuthorall-solid-state batteries-
dc.subject.keywordAuthorargyrodites-
dc.subject.keywordAuthorlithium ionic conductors-
dc.subject.keywordAuthorsolid electrolytes-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE