Full metadata record

DC Field Value Language
dc.contributor.authorDu, Naizhou-
dc.contributor.authorWang, Yongxin-
dc.contributor.authorWei, Xubing-
dc.contributor.authorGuo, Peng-
dc.contributor.authorChen, Rende-
dc.contributor.authorLi, Hao-
dc.contributor.authorLiu, Chengyuan-
dc.contributor.authorLin, Aiping-
dc.contributor.authorLee, Kwang-Ryeol-
dc.contributor.authorLi, Xiaowei-
dc.date.accessioned2025-10-01T11:01:51Z-
dc.date.available2025-10-01T11:01:51Z-
dc.date.created2025-09-30-
dc.date.issued2025-09-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153303-
dc.description.abstractDiamond-like carbon (DLC) films possess excellent mechanical and tribological properties, while their atomicscale residual stress regulation remains challenging for widespread applications. In this study, the effects of single-energy and alternating-energy deposition strategies on the growth, structural characteristics, and tribological properties of diamond-like carbon (DLC) films are investigated systematically using molecular dynamics simulations. Results reveal that the alternating-energy deposition strategy significantly reduces the residual stress of DLC film by optimizing the modulation ratio (lambda = 1.3) of film thickness at 1 eV/atom to that at 70 eV/ atom, achieving a maximal 85 % drop of residual stress, compared to that observed in single-energy deposition systems. This structural heterogeneity regulates local strain fields and disrupts continuous stress networks, effectively reducing overall residual stress. Tribologically, the alternating-energy system, particularly the softhard alternating configuration (1-70 eV), demonstrates lower friction coefficient than that in the hard-soft alternating case. This attributes to its periodic soft-hard alternating surface structure and the formation of a graphene-like layered architecture during the friction process, which minimizes the friction through weak van der Waals interactions and uniform stress distribution. These results highlight the potential of alternating-energy deposition for optimizing DLC film properties and provide theoretical foundation and experimental guidance for designing DLC films with low stress and high tribological performance.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleLow-stress optimization and enhanced tribological properties of multilayer DLC films via alternating-energy deposition-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2025.120721-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCarbon, v.244-
dc.citation.titleCarbon-
dc.citation.volume244-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001567943300007-
dc.identifier.scopusid2-s2.0-105013591369-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusAMORPHOUS-CARBON FILMS-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusSTRUCTURAL-PROPERTIES-
dc.subject.keywordPlusDOPED DLC-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusINSIGHTS-
dc.subject.keywordAuthorDiamond-like carbon-
dc.subject.keywordAuthorAlternating-energy deposition-
dc.subject.keywordAuthorFriction mechanism-
dc.subject.keywordAuthorMolecular dynamics-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE