Full metadata record

DC Field Value Language
dc.contributor.authorBae, Sang Hyeok-
dc.contributor.authorSuh, Joo Hyeong-
dc.contributor.authorJo, Yejin-
dc.contributor.authorCho, Yong Jun-
dc.contributor.authorCho, Min Kyung-
dc.contributor.authorPark, Jung Hwan-
dc.contributor.authorPark, Min-Sik-
dc.contributor.authorJeong, Sunho-
dc.date.accessioned2025-11-21T02:14:02Z-
dc.date.available2025-11-21T02:14:02Z-
dc.date.created2025-11-11-
dc.date.issued2025-10-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153591-
dc.description.abstractFast charging of commercial lithium-ion batteries severely compromises long-term cycle durability, particularly in cells using high mass-loading thick electrodes. Such performance decay originates from interfacial kinetic limitations in the graphite anode as follows: (i) a sluggish Li+ desolvation at the electrolyte-graphite interface, (ii) a hindered Li+ diffusion across the solid electrolyte interphase (SEI), and (iii) a restricted Li+ insertion into the graphite, which collectively lead to an undesirable Li plating. Herein, we introduce an ultrathin and uniform MoO2/Mo2C biphasic passivation layer, achieved through a sequential cationic polyelectrolyte-assisted molybdate adsorption approach. The outer MoO2 layer does not only suppress an excessive SEI formation but also stabilizes the electrolyte interface by promoting the formation of Li2O and LiF-rich SEI that are both ionically conductive and chemically robust. The inner Mo2C layer provides a low Li+ adsorption energy (-0.97 eV), a reduced surface diffusion barrier (43 meV), and a high electrical conductivity (similar to 104 S cm-1), consequently enabling capacitive behavior and fast intercalation kinetics at the edge plane. The biphasic layer-passivated graphite anode delivers a fast-charging capability, reaching the 80% state of charge in just 7.4 min at a current density of 6 C and retaining 78.3% of its initial capacity after 600 fast-charge cycles with a practically viable high areal capacity of 3.2 mAh cm-2. These results represent a notable advancement over previously reported surface-engineered graphite anodes, particularly under industrially demanding conditions including high mass-loading and fast-charging.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleBiphasic MoO2/Mo2C-Passivated Graphite Anodes for Fast-Charging Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.5c11476-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Nano-
dc.citation.titleACS Nano-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusSOLID-ELECTROLYTE INTERPHASE-
dc.subject.keywordPlusMO2C-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusSEI-
dc.subject.keywordAuthorpassivation-
dc.subject.keywordAuthorgraphite-
dc.subject.keywordAuthoranode-
dc.subject.keywordAuthorlithium-
dc.subject.keywordAuthorbattery-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE