Full metadata record

DC Field Value Language
dc.contributor.authorKim, Ji Eun-
dc.contributor.authorChun, Suk Yeop-
dc.contributor.authorSoh, Keunho-
dc.contributor.authorYoon, Jung Ho-
dc.date.accessioned2025-12-29T05:00:15Z-
dc.date.available2025-12-29T05:00:15Z-
dc.date.created2025-11-19-
dc.date.issued2025-03-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153897-
dc.description.abstractMemristors are promising next-generation devices due to their energy efficiency and high data processing capabilities. Recent studies have extensively reported using memristors to mimic the human sensory system and function as versatile simulation platforms for artificial intelligence applications. This review explores the development of high-performance memristors incorporating oxide nanorods and their applications in mimicking the human sensory system and advanced computing.-
dc.languageEnglish-
dc.publisherIEEE-
dc.titleNanorods-based Memristors : Advancing Bio-inspired System and Neuromorphic Computing-
dc.typeConference-
dc.identifier.doi10.1109/EDTM61175.2025.11041471-
dc.description.journalClass1-
dc.identifier.bibliographicCitation9th Electron Devices Technology and Manufacturing Conference-EDTM-Annual-
dc.citation.title9th Electron Devices Technology and Manufacturing Conference-EDTM-Annual-
dc.citation.conferencePlaceHK-
dc.citation.conferencePlaceHong Kong, PEOPLES R CHINA-
dc.citation.conferenceDate2025-03-09-
dc.relation.isPartOf2025 9TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM-
dc.identifier.wosid001540468800388-
dc.identifier.scopusid2-s2.0-105010813847-

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE