Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jiyoung-
dc.contributor.authorYoon, Jaeeun-
dc.contributor.authorPark, Ki Hong-
dc.contributor.authorLee, Juyun-
dc.contributor.authorHwang, Jin Hyun-
dc.contributor.authorNa, Jongbeom-
dc.contributor.authorKim, Hojun-
dc.contributor.authorKim, Mijin-
dc.contributor.authorKim, Seon Joon-
dc.contributor.authorYun, Hongseok-
dc.contributor.authorOh, Taegon-
dc.date.accessioned2026-01-13T07:30:17Z-
dc.date.available2026-01-13T07:30:17Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153989-
dc.description.abstractDNA immobilization on nanoparticle surfaces enables programmable assembly, gene sensing, and intracellular delivery. However, dense, direct functionalization of atomically thin two-dimensional (2D) materials remains challenging due to their inert basal planes. In contrast, 2D transition metal carbides (MXenes) possess highly polar, chemically active surfaces terminated with −OH, −O–, and −F groups, offering a unique platform for biofunctionalization. Herein, we exploit MXene’s surface chemistry for robust DNA grafting via designing a bifunctional catechol- and azide-terminated ligand. The catechol moiety anchors strongly to the MXene surface, while the azide group enables strain-promoted cycloaddition with dibenzocyclooctyne-terminated DNA. The resulting 2D DNA brush exhibits a high grafting density, evidenced by sequence-controlled self-assembly of MXene flakes and heteroassembly with complementary Au nanoparticles. This work presents a simple, effective strategy for producing colloidal two-dimensional nucleic acid brushes, establishing a versatile platform for further exploration of such bioactive nanobrush structures in the fields of nanoscience and biotechnology.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleTwo-Dimensional Nucleic Acid Brushes on Colloidal MXene Sheets-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.5c04642-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Letters, v.25, no.52, pp.18016 - 18025-
dc.citation.titleNano Letters-
dc.citation.volume25-
dc.citation.number52-
dc.citation.startPage18016-
dc.citation.endPage18025-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001638350800001-
dc.identifier.scopusid2-s2.0-105026201065-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSURFACE FUNCTIONALIZATION-
dc.subject.keywordPlusDNA-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordAuthorSurface chemistry-
dc.subject.keywordAuthorDNA conjugation-
dc.subject.keywordAuthorTwo-dimensional material-
dc.subject.keywordAuthorSelf-assembly-
dc.subject.keywordAuthorMXene-
dc.subject.keywordAuthorSurface functionalization-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE