Full metadata record

DC Field Value Language
dc.contributor.authorRoe, Dong Gue-
dc.contributor.authorCheon, Sungjoon-
dc.contributor.authorJhun, Byung Hak-
dc.contributor.authorIm, Seongil-
dc.contributor.authorYou, Jihyeon-
dc.contributor.authorKim, Seonkwon-
dc.contributor.authorYoo, Youngjae-
dc.contributor.authorJu, Hyunsu-
dc.contributor.authorYou, Youngmin-
dc.contributor.authorCho, Jeong Ho-
dc.date.accessioned2026-02-03T06:30:30Z-
dc.date.available2026-02-03T06:30:30Z-
dc.date.created2026-02-02-
dc.date.issued2026-01-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154122-
dc.description.abstractThe rapid advancement of artificial intelligence (AI) has driven research beyond software into hardware innovation. To improve computational efficiency, AI accelerators integrating large numbers of transistors have been developed, yet this approach remains constrained by scaling and thermal limitations of silicon technology. Synaptic transistors, specialized for analog and parallel computation, have emerged as promising alternatives. Nevertheless, simply replacing silicon transistors offers limited improvement in reducing overall computational complexity. Here, we present a dual-input synaptic transistor that utilizes both light and voltage to enhance device-level computational efficiency through material functionality. The linear two-coordinate Au(I) complex, Au(DippPZI)(DPA), undergoes a ligand-to-ligand charge-transfer-induced dipole reversal upon photoexcitation, enabling photoinduced synaptic weight modulation. Complementarity, voltage-driven modulation arises from abundant ─OH trap sites in the cPVP layer. When light and voltage signals are applied simultaneously, these materials cooperatively generate an analog summation of synaptic current within a single device. The demonstrated transistor performs weight summation in reinforcement learning algorithms without requiring complex peripheral computation units, thereby reducing computational cost. This approach provides a versatile platform applicable to various learning algorithms that rely on summation operations, offering a new strategy for efficient hardware-level AI computation.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titlePhysical Implementation of Reinforcement Learning via a Signal Summation Process in a Dual-Input Synaptic Transistor: Photoinduced Dipole Inversion of Au(I) Complex with Charge Traps of cPVP-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202516522-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials-
dc.citation.titleAdvanced Materials-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.identifier.scopusid2-s2.0-105026705607-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordAuthorartificial synapse-
dc.subject.keywordAuthorAu complex-
dc.subject.keywordAuthordevice-level computation-
dc.subject.keywordAuthordual-input-
dc.subject.keywordAuthorreinforcement learning-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE