Full metadata record

DC Field Value Language
dc.contributor.authorShamsizadeh, Mohammad Amir-
dc.contributor.authorMovahed, Siyavash Kazemi-
dc.contributor.authorBahreini, Zahra-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorKhuzani, Ali Habibi-
dc.date.accessioned2026-02-04T05:30:33Z-
dc.date.available2026-02-04T05:30:33Z-
dc.date.created2026-02-02-
dc.date.issued2026-04-
dc.identifier.issn1293-2558-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/154186-
dc.description.abstractNatural enzymes, despite their high efficiency, suffer from instability and high costs, limiting their practical use. Nanozymes which are nanomaterial-based enzyme mimics offer a robust alternative. Here, we report the design and synthesis of a bimetallic nanozyme consisting of iron and ruthenium nanoparticles that are immobilized on ordered mesoporous carbon spheres (FeRu@OMCS). This nanozyme exhibits exceptional peroxidase-like activity driven by a synergistic electronic interaction between the two metals. X-ray photoelectron spectroscopy shows charge transfer from ruthenium to iron and demonstrates this interaction. The FeRu@OMCS nanozyme has an outstandingly low Michaelis-Menten constant (Km) of 0.043 mM with the substrate tetramethylbenzidine (TMB), indicating a higher affinity for the substrate than that of its monometallic counterparts and even natural horseradish peroxidase. This work presents a rational design strategy for creating highly active, stable, and cost-effective bimetallic nanozymes for potential applications in diagnostics and catalysis.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleIron-ruthenium nanoparticles on ordered mesoporous carbon: A bimetallic nanozyme with superior peroxidase-like activity-
dc.typeArticle-
dc.identifier.doi10.1016/j.solidstatesciences.2026.108210-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSolid State Sciences, v.174-
dc.citation.titleSolid State Sciences-
dc.citation.volume174-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001659965200001-
dc.identifier.scopusid2-s2.0-105026656189-
dc.relation.journalWebOfScienceCategoryChemistry, Inorganic & Nuclear-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusARTIFICIAL ENZYMES-
dc.subject.keywordPlusHYDROGEN-PEROXIDE-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusGOLD-
dc.subject.keywordAuthorNanozyme-
dc.subject.keywordAuthorPeroxidase-
dc.subject.keywordAuthorBimetallic-
dc.subject.keywordAuthorRuthenium-
dc.subject.keywordAuthorIron-
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE