Full metadata record

DC Field Value Language
dc.contributor.authorMoon, Ji-Yun-
dc.contributor.authorKim, Do-Hoon-
dc.contributor.authorKim, Seung-Il-
dc.contributor.authorHwang, Hyun-Sik-
dc.contributor.authorChoi, Jun-Hui-
dc.contributor.authorHeyong, Seok-Ki-
dc.contributor.authorGhods, Soheil-
dc.contributor.authorPark, Hyeong Gi-
dc.contributor.authorKim, Eui-Tae-
dc.contributor.authorBae, Sukang-
dc.contributor.authorLee, Seoung-Ki-
dc.contributor.authorSon, Seok-Kyun-
dc.contributor.authorLee, Jae-Hyun-
dc.date.accessioned2024-01-12T02:35:55Z-
dc.date.available2024-01-12T02:35:55Z-
dc.date.created2022-10-23-
dc.date.issued2022-11-
dc.identifier.issn2590-2393-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/75961-
dc.description.abstractTransition-metal dichalcogenides (TMDCs), whose physical proper-ties can be modified by the number of layers within the atomic thick-ness range, are emerging as an essential active interlayer for nano -electronic devices based on van der Waals (vdW) heterostructures. Here, we show the atomic spalling of vdW crystals that achieves large-area TMDCs with a controlled number of layers. Unlike 3D co-valent network solids, the TMDCs are layered crystals featuring strong in-plane covalent bonding and weak out-of-plane vdW inter-action, which allow the crack propagation depth to be reduced to the atomic scale. By adjusting the residual stress of the stressor film, we controlled the crack propagation depth at a scale corre-sponding to the monolayer thickness of the TMDCs. Consequently, mono-, bi-, and trilayer TMDCs were selectively separated from the vdW crystals. The presented results show huge potential for the manufacture of layer-engineered, high-quality vdW materials, which can be developed into functional optoelectronic devices.-
dc.languageEnglish-
dc.publisherCell Press-
dc.titleLayer-engineered atomic-scale spalling of 2D van der Waals crystals-
dc.typeArticle-
dc.identifier.doi10.1016/j.matt.2022.07.021-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMatter, v.5, no.11, pp.3935 - 3946-
dc.citation.titleMatter-
dc.citation.volume5-
dc.citation.number11-
dc.citation.startPage3935-
dc.citation.endPage3946-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000882061900005-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMONOLAYER MOS2-
dc.subject.keywordPlusVAPOR-DEPOSITION-
dc.subject.keywordPlusPHOTOLUMINESCENCE-
dc.subject.keywordPlusEXFOLIATION-
dc.subject.keywordPlusCRACKING-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusFILMS-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE