Mucin modifies microbial composition and improves metabolic functional potential of a synthetic gut microbial ecosystem

Authors
HUMPHREY ANDALO MABWIErick V.G. KombaKilaza Samson MwaikonoEMMANUEL, HITAYEZUMAULIASARI, INTAN RIZKIJin Jong BeomPAN, CHEOL HOCha, Kwang Hyun
Issue Date
2022-03
Publisher
한국응용생명화학회
Citation
Journal of Applied Biological Chemistry, v.65, no.1, pp.63 - 74
Abstract
Microbial dysbiosis in the gut is associated with human diseases, and variations in mucus alter gut microbiota. Therefore, we explored the effects of mucin on the gut microbiota using a community of 19 synthetic gut microbial species. Cultivation of these species in modified Gifu anaerobic medium (GAM) supplemented with mucin before synthetic community assembly facilitated substantial growth of the Bacteroides, Akkermansia, and Clostridium genera. The results of 16S rRNA microbial relative abundance profiling revealed more of the beneficial microbes Collinsella, Bifidobacterium, Ruminococcus, and Lactobacillus. This increased acetate levels in the community cultivated with, rather than without (control), mucin. We identified differences in predicted cell function and metabolism between microbes cultivated in GAM with and without mucin. Mucin not only changed the composition of the gut microbial community, but also modulated metabolic functions, indicating that it could help to modulate microbial changes associated with human diseases.
Keywords
16S rRNA gene sequencing; Mucin; Short chain fatty acids; Synthetic gut microbiome
ISSN
1976-0442
URI
https://pubs.kist.re.kr/handle/201004/76773
DOI
10.3839/jabc.2022.009
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE