Full metadata record

DC Field Value Language
dc.contributor.authorHanjae Kim-
dc.contributor.authorSunghun Joung-
dc.contributor.authorKIM, IG JAE-
dc.contributor.authorKwanghoon Sohn-
dc.date.accessioned2024-01-12T03:46:08Z-
dc.date.available2024-01-12T03:46:08Z-
dc.date.created2021-09-29-
dc.date.issued2021-06-
dc.identifier.issn1063-6919-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/77404-
dc.description.abstractExisting person search methods integrate person detection and re-identification (re-ID) module into a unified system. Though promising results have been achieved, the misalignment problem, which commonly occurs in person search, limits the discriminative feature representation for re-ID. To overcome this imitation, we introduce a novel framework to learn the discriminative representation by utilizing prototype in OIM loss. Unlike conventional methods using prototype as a representation of person identity, we utilize it as guidance to allow the attention network to consistently highlight multiple instances across different poses. Moreover, we propose a new prototype update scheme with adaptive momentum to increase the discriminative ability across different instances. Extensive ablation experiments demonstrate that our method can significantly enhance the feature discriminative power, outperforming the state-ofthe-art results on two person search benchmarks including CUHK-SYSU and PRW.-
dc.languageEnglish-
dc.publisherIEEE COMPUTER SOC-
dc.subject재식별-
dc.subject사람 추적-
dc.subjectSaliency-
dc.titlePrototype-Guided Saliency Feature Learning for Person Search-
dc.typeConference-
dc.identifier.doi10.1109/CVPR46437.2021.00483-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCVPR, IEEE conf. on Computer Vision and Pattern Recognition, pp.4863 - 4872-
dc.citation.titleCVPR, IEEE conf. on Computer Vision and Pattern Recognition-
dc.citation.startPage4863-
dc.citation.endPage4872-
dc.citation.conferencePlaceUS-
dc.citation.conferencePlaceonline-
dc.citation.conferenceDate2021-06-19-
dc.relation.isPartOf2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021-
dc.identifier.wosid000739917305007-
dc.identifier.scopusid2-s2.0-85114189688-
Appears in Collections:
KIST Conference Paper > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE