Phase-engineered two-dimensional MoO3/MoS2 hybrid nanostructures enable efficient indoor organic photovoltaics

Authors
Muhammad Ahsan SaeedMuhammad FaizanTae Hyuk KimHyungju AhnKim, Ji YoungKyung-Wan NamJae Won Shim
Issue Date
2023-10
Publisher
Royal Society of Chemistry
Citation
Journal of Materials Chemistry A, v.11, no.40, pp.21828 - 21838
Abstract
Organic photovoltaics (OPVs) have become a niche application for driving off-grid Internet-of-things (IoT) devices in indoor settings. Two-dimensional nanostructured transition metal sulfides (TMSs) play a pivotal role in this context owing to their unique photophysical, optoelectronic, and structural characteristics. Non-fullerene acceptor (NFA)-based OPVs doped with core?shell structured hybrid TMSs are fabricated, demonstrating a marked power conversion efficiency (PCE) of 27.9% under 1000 lx light-emitting diode (LED) illumination. The TMS hybrid nanostructures enable compact molecular packing and effectively enhance the absorption strength of the active layers, in addition to optimizing their nanomorphology, yielding significant improvements in the current density and fill factor of indoor OPVs. In addition, an optimal amount of TMSs in the active layers reduces trap-assisted recombination and boosts the charge dissociation efficiencies and carrier mobilities, leading to enhanced PCEs. This study represents a significant advance in harnessing the potential of 2D TMSs in state-of-the-art OPVs under dim indoor lighting conditions.
Keywords
TRANSPORT; POLYMER; POWER; MOS2; FILM
ISSN
2050-7488
URI
https://pubs.kist.re.kr/handle/201004/79806
DOI
10.1039/D3TA04608G
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE