Fast Replanning Multi-Heuristic A

Authors
Ha, JunhyoungKim, Soonkyum
Issue Date
2021-05
Publisher
IEEE
Citation
2021 IEEE International Conference on Robotics and Automation (ICRA), pp.7430 - 7435
Abstract
In this paper, we proposed a novel path replanning algorithm on arbitrary graphs. To avoid computationally heavy preprocessing and to reduce required memory to store the expanded vertices of the previous search, we defined the feature vertices, which are extracted from the previous path by a simple algorithm to compare the costs between adjacent vertices along the path once. Proper additional heuristic functions are designed for these feature vertices to work as local attractors guiding the search toward the previous path's neighbors. To avoid unnecessary expansions and speed up the search, these additional heuristic functions are properly managed to stop intriguing or guiding search toward the feature vertices. The proposed algorithm of Fast Replanning Multi-Heuristic A* is a variation of Shared Multi-Heuristic A* while removing or deactivating the additional heuristic functions during the search. Fast Replanning Multi-Heuristic A* guarantees the bounded suboptimality while efficiently exploring the graph toward the goal vertex. The performance of the proposed algorithm was compared with weighted A* and D* lite by simulating numerous path replanning problems in maze-like maps.
ISSN
1050-4729
URI
https://pubs.kist.re.kr/handle/201004/113573
DOI
10.1109/ICRA48506.2021.9561928
Appears in Collections:
KIST Conference Paper > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE