Electrochemical modulation of trap states in PbS QDs and their electrical characterization

Authors
Jin, JunyoungPark, Tae HwanSeong, Tae-YeonHwang, Gyu Weon
Issue Date
2022-07
Publisher
한국물리학회
Citation
Journal of the Korean Physical Society, v.81, no.1, pp.54 - 58
Abstract
The optoelectronic devices based on colloidal lead sulfide quantum dots (PbS QDs) have suffered from electronic trap states in bandgap. The trap state is a source for accelerating carrier recombination and degrading the performance of optoelectronic devices. Here, we treated PbS QD electrochemically using cyclic voltammetry to modulate the density of trap states. The reduction of the trap density in the QD layer after electrochemical treatment was confirmed by the impedance analyzing technique, the thermal admittance spectroscopy. The XPS spectra showed that the QD films are oxidized after the electrochemical treatment, implying that the oxidation of the QD surface regulated the trap density through the electrochemical treatment.
Keywords
FIELD-EFFECT TRANSISTORS; OPEN-CIRCUIT VOLTAGE; SUB-BANDGAP STATES; QUANTUM DOTS; Lead sulfide; Quantum dot; Cyclic voltammetry; Trap passivation; Thermal admittance spectroscopy; XPS
ISSN
0374-4884
URI
https://pubs.kist.re.kr/handle/201004/114911
DOI
10.1007/s40042-022-00511-0
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE