An Investigation of HZO-Based n/p-FeFET Operation Mechanism and Improved Device Performance by the Electron Detrapping Mode
- Authors
- Kuk, Song-Hyeon; Han, Seung-Min; Kim, Bong Ho; Baek, Seung-Hyub; Han, Jae-Hoon; Kim, Sang-Hyeon
- Issue Date
- 2022-04
- Publisher
- Institute of Electrical and Electronics Engineers
- Citation
- IEEE Transactions on Electron Devices, v.69, no.4, pp.2080 - 2087
- Abstract
- Ferroelectric field-effect transistor (FeFET) is a promising nonvolatile memory device because of its CMOS compatibility, scalability, and energy efficiency. However, the device physics has not been studied well, which hinders FeFET development and process design kit (PDK) construction. In this article, we report a comprehensive understanding of the n/p-FeFET operation mechanism as a nonvolatile memory device, for the first time, based on quasi-static split CV measurement. We also suggest a new methodology to examine the device and show the existence of excess trapped charge and the true nonvolatile polarization. Furthermore, we found that charge trapping is necessary to switch polarization in FeFET. Finally, based on our physical findings and insights, we propose a new erase mode that leads to a wider memory window and higher write endurance (> 10(10) cycles), even without optimizing the device fabrication process.
- Keywords
- MEMORY; FILMS; Switches; Logic gates; FeFETs; Charge measurement; Current measurement; Pulse measurements; Capacitance; Charge trapping; ferroelectric memory; ferroelectric transistor; ferroelectrics; hafnium zirconium oxide; nonvolatile memory
- ISSN
- 0018-9383
- URI
- https://pubs.kist.re.kr/handle/201004/115294
- DOI
- 10.1109/TED.2022.3154687
- Appears in Collections:
- KIST Article > 2022
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.