Facile Achievement of Complementary Resistive Switching in Block Copolymer Micelle-Based Resistive Memories

Authors
Choi, Han-HyeongKim, Hyun JinOh, JinwooKim, MinsungKim, YoungjinJho, Jae YoungLee, Keun HyungSon, Jeong GonPark, Jong Hyuk
Issue Date
2022-04
Publisher
John Wiley & Sons Ltd.
Citation
Macromolecular Rapid Communications, v.43, no.7
Abstract
Interest in resistive random access memory (RRAM) has grown rapidly in recent years for realizing ultrahigh density data storage devices. However, sneak currents in these devices can result in misreading of the data, thus limiting the applicability of RRAM. Complementary resistive switching (CRS) memory consisting of two antiserial RRAMs can considerably reduce sneak currents; however, complicated device architectures and manufacturing processes still remain as challenges. Herein, an effective and simple approach for fabricating CRS memory devices using self-assembled block copolymer micelles is reported. Cu ions are selectively placed in the core of polystyrene-block-poly(2-vinylpyridine) spherical micelles, and a hexagonally packed micelle monolayer is prepared through spin-coating. The micelle monolayer can be a symmetrical resistive switching layer, because the micelles and Cu act as dielectric and active metals in memory devices, respectively. The locally enhanced electric field and Joule heating achieved by the structured Cu atoms inside the micelles promote metal ionization and ion migration in a controlled manner, thus allowing for position selectivity during resistive switching. The micelle-based memory device exhibits stable and reliable CRS behavior, with a nonoverlapping and narrow distribution of threshold voltages. Therefore, this approach is promising for fabricating CRS memory devices for high-performance and ultrahigh-density RRAM applications.
Keywords
CHARGE-LIMITED CURRENTS; NANOPARTICLES; MECHANISMS; DEVICES; block copolymer micelles; complementary resistive switching; reliability; reproducibility; resistive random access memory
ISSN
1022-1336
URI
https://pubs.kist.re.kr/handle/201004/115478
DOI
10.1002/marc.202100686
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE