Enhancement of electrical performance of atomic layer deposited SnO films via substrate surface engineering

Authors
Baek, In-HwanCho, Ah-JinLee, Ga YeonChoi, HeenangWon, Sung OkEom, TaeyongChung, Taek-MoHwang, Cheol SeongKim, Seong Keun
Issue Date
2021-09
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY C, v.9, no.36, pp.12314 - 12321
Abstract
Atomic layer deposition (ALD) is a technique based on the surface reaction of precursors; thus, it strongly depends on the surface states of the substrate. We demonstrate significant changes in the structural and electrical properties of SnO thin films via modification of substrate surface states. The surface of SiO2 exposed to the atmosphere is usually contaminated by organic compounds and lacks hydroxyl groups. The plasma treatment effectively formed numerous functional groups on SiO2, eventually resulting in significant differences in the growth characteristics and properties of ALD-grown SnO films. In the case of a plasma-treated SiO2 substrate, the SnO layer was fully crystallized at the SnO/SiO2 interface, and the (00l) planes of SnO were aligned parallel to the substrate. The numerous functional groups on the plasma-treated SiO2 promoted a complete reaction on the surface, which resulted in the formation of more stoichiometric SnO containing fewer impurities near the interface. The changes in the interfacial properties by the plasma treatment of SiO2 enhanced the field-effect mobility from 0.7 to 2.0 cm(2) V-1 s(-1) and reduced the hysteresis voltage. The findings may contribute to the realization of complementary oxide thin film devices in future electronics.
Keywords
THIN-FILMS; GROWTH; OXIDE; MONOXIDE; THIN-FILMS; GROWTH; OXIDE; MONOXIDE; SnO; atomic layer deposition; p-type; surface treatment
ISSN
2050-7526
URI
https://pubs.kist.re.kr/handle/201004/116551
DOI
10.1039/d1tc02703d
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE