Intended gait speed prediction via swing limb kinematics applicable for patients with slow gait

Authors
Kim, J.Kim, Y.Lee, J. M.Kim, S. -J.
Issue Date
2020-09-03
Publisher
INST ENGINEERING TECHNOLOGY-IET
Citation
ELECTRONICS LETTERS, v.56, no.18, pp.911 - 913
Abstract
Accurate prediction of intended gait speed is crucial for facilitating volitional muscle activity during robot-assisted gait training. Considering that most patients find it difficult to perform gait at relatively high speeds, it is also imperative that the prediction model performs well at slow gait speed. Furthermore, ample time for signal processing should be given prior to robot assistance such that the patient is not subjected to unwanted resistance or lag. Here, the authors propose to predict the intended speed of the contralateral limb via kinematics of the current swing limb. Three lower-limb positions were evaluated using an inertial measurement unit sensor during treadmill gait sessions. The results suggest that the authors&apos; model performs well even during slow gait speeds (<= 2 km/h) with R-2 values as high as 0.86.
Keywords
TREADMILL WALKING; STROKE; TREADMILL WALKING; STROKE; medical robotics; kinematics; sensors; gait analysis; electromyography; medical signal processing; intended gait speed prediction; swing limb kinematics; volitional muscle activity; robot-assisted gait training; prediction model; slow gait speed; robot assistance; contralateral limb; current swing limb; lower-limb positions; treadmill gait sessions; signal processing; inertial measurement unit sensor; EMG
ISSN
0013-5194
URI
https://pubs.kist.re.kr/handle/201004/118138
DOI
10.1049/el.2020.1245
Appears in Collections:
KIST Article > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE