The Importance of p-Doping for Quantum Dot Laser on Silicon Performance

Authors
Norman, Justin C.Zhang, ZeyuJung, DaehwanShang, ChenKennedy, M. J.Dumont, MarioHerrick, Robert W.Gossard, Arthur C.Bowers, John E.
Issue Date
2019-12
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Citation
IEEE JOURNAL OF QUANTUM ELECTRONICS, v.55, no.6
Abstract
p-type modulation doping of the quantum dot active region is known to improve high temperature and dynamic performance of quantum dot lasers. These improvements are critical to realizing commercially relevant quantum dot devices on silicon and are shown to enable continuous wave operation over 100 degrees C, nearly complete insensitivity to optical feedback, and orders of magnitude improvement in device reliability relative to unintentionally doped active regions. Also described is a spectrally resolved analysis of the effect of p-modulation doping on the optical gain revealing anomalous behavior that explains the high characteristic temperatures commonly observed in literature for similar devices on native substrate.
Keywords
AUGER RECOMBINATION; TEMPERATURE; SI; AUGER RECOMBINATION; TEMPERATURE; SI; Integrated optoelectronics; photonics; quantum dots; semiconductor lasers
ISSN
0018-9197
URI
https://pubs.kist.re.kr/handle/201004/119282
DOI
10.1109/JQE.2019.2941579
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE