Reactive molecular dynamics simulation of the amorphous carbon growth: Effect of the carbon triple bonds

Authors
Li, XiaoweiMizuseki, HiroshiPai, Sung JinLee, Kwang-Ryeol
Issue Date
2019-11
Publisher
ELSEVIER
Citation
COMPUTATIONAL MATERIALS SCIENCE, v.169
Abstract
The growth behavior of amorphous carbon (a-C) film was studied by reactive molecular dynamics simulation using the atom-by-atom deposition approach. Various reactive force field (ReaxFF) models were compared in terms of the structural properties of the resulting a-C films. By linking the structural properties of the film with the difference in the parameter sets of the ReaxFF models, we reveal that the carbon triple bond stabilization energy in the ReaxFF model, v(trip), significantly affects the growth dynamics and structural evolution of the simulated a-C films. When the negative v(trip) value is too high, the generation of a large number of C-C dimers and triple bond-terminated chain structures induces an etching-like process. In contrast, too small negative value results in an overestimation of both the formation energy for C-C dimers and the bonding energy for terminal triple bonds. By ab initio calculation of the triple bond and comparing it with the molecular static calculation using the ReaxFF models, we tailored the v(trip), value to - 13.34 kcal/mole, and the simulated a-C film has an atomic structure comparable with the existing experimental and theoretical results.
Keywords
DIAMOND-LIKE CARBON; FORCE-FIELD; STRUCTURAL-PROPERTIES; FRICTION; REAXFF; FILMS; GRAPHITIZATION; EVOLUTION; COATINGS; ENERGY; DIAMOND-LIKE CARBON; FORCE-FIELD; STRUCTURAL-PROPERTIES; FRICTION; REAXFF; FILMS; GRAPHITIZATION; EVOLUTION; COATINGS; ENERGY; Triple bond; Dynamic growth; Amorphous carbon; Molecular dynamics; ReaxFF potential
ISSN
0927-0256
URI
https://pubs.kist.re.kr/handle/201004/119365
DOI
10.1016/j.commatsci.2019.109143
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE