Internal-Flow-Mediated, Tunable 1D Cassie-to-Wenzel Wetting Transition on Superhydrophobic Microcavity Surfaces during Evaporation
- Authors
- Pendyala, Prashant; Kim, Hong Nam; Grewal, Harpreet S.; Chae, Uikyu; Yang, Sungwook; Cho, Il-Joo; Song, Simon; Yoon, Eui-Sung
- Issue Date
- 2019-10-02
- Publisher
- TAYLOR & FRANCIS INC
- Citation
- NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, v.23, no.4, pp.275 - 288
- Abstract
- Superhydrophobic textured surfaces are known to maintain a nonwetted state unless external stimuli are applied since they can withstand high wetting pressure. Herein, we report a new category of tunable, one-dimensional (1D) Cassie-to-Wenzel wetting transitions during evaporation, even on superhydrophobic surfaces. The transition initiates at the periphery of the evaporating drop, and the wetting transition propagates toward the center of the drop. The transitions are observed for surfaces with wetting pressures as high as similar to 7,568 Pa, which is much higher than the Laplace pressure, i.e., similar to 200 Pa. In situ high-contrast fluorescence microscopy images of the evaporating drop show that the transition is induced by preferential depinning of the air-water interface and subsequent formation of air bubbles in the cavities near the three-phase contact line. The evaporation-induced internal flow enhances the pressure within the water droplet and subsequently causes a Cassie-to-Wenzel wetting transition.
- Keywords
- HEAT-TRANSFER; ROUGH SURFACES; WATER; CONDENSATION; DROPLETS; DESIGN; HEAT-TRANSFER; ROUGH SURFACES; WATER; CONDENSATION; DROPLETS; DESIGN; 1D wetting transition; Cassie state; Wenzel state; internal flow; evaporation
- ISSN
- 1556-7265
- URI
- https://pubs.kist.re.kr/handle/201004/119470
- DOI
- 10.1080/15567265.2019.1660439
- Appears in Collections:
- KIST Article > 2019
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.