Evaluation of subsurface damage inherent to polished GaN substrates using depth-resolved cathodoluminescence spectroscopy

Authors
Lee, JinhyungKim, Jong CheolKim, JongsikSingh, Rajiv K.Arjunan, Arul C.Lee, Haigun
Issue Date
2018-08-30
Publisher
ELSEVIER SCIENCE SA
Citation
THIN SOLID FILMS, v.660, pp.516 - 520
Abstract
The extent of subsurface damage on (0001) GaN wafers post different polishing treatments was quantified using depth-resolved cathodoluminescence spectroscopy (DRCLS). The band edge emission spectra were obtained from CLS with different electron energies, which manifested a significant non-radiative recombination resulted from polishing-induced subsurface damage. Cross-sectional transmission electron microscopy (XTEM) was also used to diagnose the extent of the subsurface damage layer. For the GaN polished with 1.00 and 0.25 mu m diamonds abrasive, the extent of non-radiative subsurface damage is about 250 and 100 nm, corresponding to the calculated electron penetration depth at the accelerating voltage for the onset of band edge emission. In this study, the depth of subsurface damage estimated from CL spectra compared well with direct XTEM measurements in GaN substrate.
Keywords
GALLIUM NITRIDE; RECOMBINATION; DISLOCATIONS; GALLIUM NITRIDE; RECOMBINATION; DISLOCATIONS; Subsurface damage; Chemical mechanical polishing; Non-radiative recombination; Cathodoluminescence spectroscopy; Gallium nitride
ISSN
0040-6090
URI
https://pubs.kist.re.kr/handle/201004/121014
DOI
10.1016/j.tsf.2018.07.002
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE