Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production

Authors
Jo, SuahYoon, JinkyungLee, Sun-MiUm, YoungsoonHan, Sung OkWoo, Han Min
Issue Date
2017-09
Publisher
Elsevier BV
Citation
Journal of Biotechnology, v.258, pp.69 - 78
Abstract
Xylose-negative Corynebacterium glutamicum has been engineered to utilize xylose as the sole carbon source via either the xylose isomerase (XI) pathway or the Weimberg pathway. Heterologous expression of xylose isomerase and overexpression of a gene encoding for xylulose kinase enabled efficient xylose utilization. In this study, we show that two functionally-redundant transcriptional regulators (GntR1 and GntR2) present on xylose repress the pentose phosphate pathway genes. For efficient xylose utilization, pentose phosphate pathway genes and a phosphoketolase gene were overexpressed with the XI pathway in C. glutamicum. Overexpression of the genes encoding for transaldolase (Tal), 6-phosphogluconate dehydrogenase (Gnd), or phosphoketolase (XpkA) enhanced the growth and xylose consumption rates compared to the wild-type with the XI pathway alone. However, co-expression of these genes did not have a synergetic effect on xylose utilization. For the succinate production from xylose, overexpression of the tat gene with the XI pathway in a succinate-producing strain improved xylose utilization and increased the specific succinate production rate by 2.5-fold compared to wild type with the XI pathway alone. Thus, overexpression of the tal, gnd, or xpkA gene could be helpful for engineering C glutamicum toward production of value-added chemicals with efficient xylose utilization. (C) 2017 Elsevier B.V. All rights reserved.
Keywords
ESCHERICHIA-COLI; PHOSPHOKETOLASE PATHWAY; SACCHAROMYCES-CEREVISIAE; METABOLIC PATHWAY; GENE-EXPRESSION; CATABOLISM; GLUCOSE; GROWTH; TRANSFORMATION; GNTR1; Corynebacterium glutamicum; Synthetic biology; Metabolic engineering; Xylose utilization; Phosphoketolase
ISSN
0168-1656
URI
https://pubs.kist.re.kr/handle/201004/122321
DOI
10.1016/j.jbiotec.2017.01.015
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE