Water-Floating Giant Nanosheets from Helical Peptide Pentamers

Authors
Lee, JaehunChoe, Ik RangKim, Nak-KyoonKim, Won-JeJang, Hyung-SeokLee, Yoon-SikNam, Ki Tae
Issue Date
2016-09
Publisher
AMER CHEMICAL SOC
Citation
ACS NANO, v.10, no.9, pp.8263 - 8270
Abstract
One of the important challenges in the development of protein-mimetic materials is understanding the sequence-specific assembly behavior and dynamic folding change. Conventional strategies for constructing two-dimensional (2D) nanostructures from peptides have been limited to using beta-sheet forming sequences as building blocks due to their natural tendency to form sheet-like aggregations. We have identified a peptide sequence (YFCFY) that can form dieters via a disulfide bridge, fold into a helix, and assemble into macroscopic flat sheets at the air/water interface. Due to the large driving force for 2D assembly and high elastic modulus of the resulting sheet, the peptide assembly induces flattening of the initially round water droplet. Additionally, we found that stabilization of the helix by dimerization is a key determinant for maintaining macroscopic flatness over a few tens of centimeters even with a uniform thickness of <10 nm. Furthermore, the ability to transfer the sheets from a water droplet to another substrate allows for multiple stacking of 2D peptide nanostructures, suggesting possible applications in biomimetic catalysis, biosensors, and 2D related electronic devices.
Keywords
SECONDARY-STRUCTURE; PEPTOID NANOSHEETS; CIRCULAR-DICHROISM; RAMAN-SPECTROSCOPY; IN-VIVO; NANOMATERIALS; ASSEMBLIES; PROTEINS; CRYSTALS; NANOSTRUCTURES; SECONDARY-STRUCTURE; PEPTOID NANOSHEETS; CIRCULAR-DICHROISM; RAMAN-SPECTROSCOPY; IN-VIVO; NANOMATERIALS; ASSEMBLIES; PROTEINS; CRYSTALS; NANOSTRUCTURES; peptide; self-assembly; two-dimensional materials; helix; disulfide bond; biomaterials
ISSN
1936-0851
URI
https://pubs.kist.re.kr/handle/201004/123740
DOI
10.1021/acsnano.6b00646
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE