A microfluidic device for evaluating the dynamics of the metabolism-dependent antioxidant activity of nutrients
- Authors
- Lee, Jungwoo; Choi, Jong-ryul; Ha, Sang Keun; Choi, Inwook; Lee, Seung Hwan; Kim, Donghyun; Choi, Nakwon; Sung, Jong Hwan
- Issue Date
- 2014-08-21
- Publisher
- Royal Society of Chemistry
- Citation
- Lab on a Chip, v.14, no.16, pp.2948 - 2957
- Abstract
- Various food components are known for their health-promoting effects. However, their biochemical effects are generally evaluated in vitro, and their actual in vivo effect can vary significantly, depending on their metabolic profiles. To evaluate the effect of the liver metabolism on the antioxidant activity, we have developed a two-compartment microfluidic system that integrates the dynamics of liver metabolism and the subsequent antioxidant activity of food components. In the first compartment of the device, human liver enzyme fractions were immobilized inside a poly(ethylene glycol) diacrylate (PEGDA) hydrogel to mimic the liver metabolism. The radical scavenging activity was evaluated by the change of the 2,2-diphenyl-1-picrythydrazyt (DPPH) absorbance in the second compartment. Reaction engineering and fluid mechanics principles were used to develop a simplified analytical model and a more complex finite element model, which were used to design the chip and determine the optimal flow conditions. For real-time measurements of the reaction on a chip, we developed a custom-made photospectrometer system with an LED light source. The developed microfluidic system showed a linear and dose-dependent antioxidant activity in response to increasing concentration of flavonoid. We also compared the antioxidant activity of flavonoid after various liver metabolic reactions. This microfluidic system can serve as a novel in vitro platform for predicting the antioxidant activity of various food components in a more physiologically realistic manner, as well as for studying the mechanism of action of such food components.
- Keywords
- ON-A-CHIP; FLUORESCENCE OPTICAL-DETECTION; DRUG-METABOLISM; IN-SITU; QUERCETIN; FLAVONOIDS; ENZYMES; SYSTEMS; MODEL; RAT; ON-A-CHIP; FLUORESCENCE OPTICAL-DETECTION; DRUG-METABOLISM; IN-SITU; QUERCETIN; FLAVONOIDS; ENZYMES; SYSTEMS; MODEL; RAT
- ISSN
- 1473-0197
- URI
- https://pubs.kist.re.kr/handle/201004/126452
- DOI
- 10.1039/c4lc00332b
- Appears in Collections:
- KIST Article > 2014
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.