Full metadata record

DC Field Value Language
dc.contributor.authorChang, Seo Hyoung-
dc.contributor.authorKim, Jungho-
dc.contributor.authorPhatak, Charudatta-
dc.contributor.authorD'Aquila, Kenneth-
dc.contributor.authorKim, Seong Keun-
dc.contributor.authorKim, Jiyoon-
dc.contributor.authorSong, Seul Ji-
dc.contributor.authorHwang, Cheol Seong-
dc.contributor.authorEastman, Jeffrey A.-
dc.contributor.authorFreeland, John W.-
dc.contributor.authorHong, Seungbum-
dc.date.accessioned2024-01-20T10:31:58Z-
dc.date.available2024-01-20T10:31:58Z-
dc.date.created2021-09-05-
dc.date.issued2014-02-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/127134-
dc.description.abstractThe interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectMEMRISTIVE DEVICES-
dc.titleX-ray Irradiation Induced Reversible Resistance Change in Pt/TiO2/Pt Cells-
dc.typeArticle-
dc.identifier.doi10.1021/nn405867p-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS NANO, v.8, no.2, pp.1584 - 1589-
dc.citation.titleACS NANO-
dc.citation.volume8-
dc.citation.number2-
dc.citation.startPage1584-
dc.citation.endPage1589-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000332059200054-
dc.identifier.scopusid2-s2.0-84894630635-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMEMRISTIVE DEVICES-
dc.subject.keywordAuthorresistive switching-
dc.subject.keywordAuthorX-ray irradiation-
dc.subject.keywordAuthorphotovoltaic effect-
dc.subject.keywordAuthorMagneli phase-
dc.subject.keywordAuthorJoule heating-
dc.subject.keywordAuthordefect generation-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE