Improved transfer of chemical-vapor-deposited graphene through modification of intermolecular interactions and solubility of poly(methylmethacrylate) layers
- Authors
- Jeong, Hee Jin; Kim, Ho Young; Jeong, Seung Yol; Han, Joong Tark; Baeg, Kang-Jun; Hwang, Jun Yeon; Lee, Geon-Woong
- Issue Date
- 2014-01
- Publisher
- PERGAMON-ELSEVIER SCIENCE LTD
- Citation
- CARBON, v.66, pp.612 - 618
- Abstract
- Clean chemical vapor deposition (CVD)-grown graphene surfaces with intrinsic electrical properties were obtained by a modified poly(methylmethacrylate) (PMMA) transfer method. The modified method entails UV irradiation, followed by wet cleaning of the UV-irradiated PMMA layer using a mixture of isopropyl alcohol (IPA), acetone, and methyl isobutyl ketone (MIBK). The chemical structure of the PMMA layer degrades following UV irradiation under atmospheric conditions, via side-chain cleavage of the ester groups, resulting in reduced intermolecular interactions between the PMMA layer and the underlying graphene film. Furthermore, the IPA/MIBK/acetone mixture is shown to be a powerful solvent that can effectively remove the PMMA layer without leaving any PMMA residue, which could act as a source of cracks and scattering centers for charge carrier transport, on the graphene surface. Graphene transistors fabricated by this modified transfer method show high electron and hole mobilities with ideal threshold voltages of near 0 V. (C) 2013 Elsevier Ltd. All rights reserved.
- Keywords
- POLY(METHYL METHACRYLATE); FILMS; FABRICATION; DEVICES; GAS; POLY(METHYL METHACRYLATE); FILMS; FABRICATION; DEVICES; GAS; graphene; CVD; electrical property; microstructure
- ISSN
- 0008-6223
- URI
- https://pubs.kist.re.kr/handle/201004/127295
- DOI
- 10.1016/j.carbon.2013.09.050
- Appears in Collections:
- KIST Article > 2014
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.