Load-bearing capacity and biological allowable limit of biodegradable metal based on degradation rate in vivo

Authors
Cho, Sung YounChae, Soo-WonChoi, Kui WonSeok, Hyun KwangHan, Hyung SeopYang, Seok JoKim, Young YulKim, Jong TacJung, Jae YoungAssad, Michel
Issue Date
2012-08
Publisher
WILEY-BLACKWELL
Citation
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, v.100B, no.6, pp.1535 - 1544
Abstract
In this study, a newly developed Mg-Ca-Zn alloy for low degradation rate and surface erosion properties was evaluated. The compressive, tensile, and fatigue strength were measured before implantation. The degradation behavior was evaluated by analyzing the microstructure and local hardness of the explanted specimen. Mean and maximum degradation rates were measured using micro CT equipment from 4-, 8-, and 16- week explants, and the alloy was shown to display surface erosion properties. Based on these characteristics, the average and minimum load bearing capacities in tension, compression, and bending modes were calculated. According to the degradation rate and references of recommended dietary intakes (RDI), the Mg-Ca-Zn alloy appears to be safe for human use. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 15351544, 2012.
Keywords
MAGNESIUM ALLOYS; PURE MAGNESIUM; BONE; BIOMATERIALS; CORROSION; SCAFFOLDS; POLYMERS; IMPLANTS; DEVICES; MAGNESIUM ALLOYS; PURE MAGNESIUM; BONE; BIOMATERIALS; CORROSION; SCAFFOLDS; POLYMERS; IMPLANTS; DEVICES; load bearing; biodegradable alloy; magnesium; degradation rate; implant
ISSN
1552-4973
URI
https://pubs.kist.re.kr/handle/201004/129022
DOI
10.1002/jbm.b.32722
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE