Full metadata record

DC Field Value Language
dc.contributor.authorKim, Dongkyun-
dc.contributor.authorJung, Junhee-
dc.contributor.authorThuy Tuong Nguyen-
dc.contributor.authorKim, Daijin-
dc.contributor.authorKim, Munsang-
dc.contributor.authorKwon, Key Ho-
dc.contributor.authorJeon, Jae Wook-
dc.date.accessioned2024-01-20T14:34:21Z-
dc.date.available2024-01-20T14:34:21Z-
dc.date.created2021-09-04-
dc.date.issued2012-06-
dc.identifier.issn1598-1657-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/129225-
dc.description.abstractEye detection is widely used in applications, such as face recognition, driver behavior analysis, and human-computer interaction. However, it is difficult to achieve real-time performance with software-based eye detection in an embedded environment. In this paper, we propose a parallel hardware architecture for real-time eye detection. We use the AdaBoost algorithm with modified census transform(MCT) to detect eyes on a face image. We parallelize part of the algorithm to speed up processing. Several downscaled pyramid images of the eye candidate region are generated in parallel using the input face image. We can detect the left and the right eye simultaneously using these downscaled images. The sequential data processing bottleneck caused by repetitive operation is removed by employing a pipelined parallel architecture. The proposed architecture is designed using Verilog HDL and implemented on a Virtex-5 FPGA for prototyping and evaluation. The proposed system can detect eyes within 0.15 ms in a VGA image.-
dc.languageEnglish-
dc.publisherIEEK PUBLICATION CENTER-
dc.subjectDEFORMABLE TEMPLATES-
dc.subjectFEATURE-EXTRACTION-
dc.subjectFACE DETECTION-
dc.subjectTRACKING-
dc.titleAn FPGA-based Parallel Hardware Architecture for Real-time Eye Detection-
dc.typeArticle-
dc.identifier.doi10.5573/JSTS.2012.12.2.150-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, v.12, no.2, pp.150 - 161-
dc.citation.titleJOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE-
dc.citation.volume12-
dc.citation.number2-
dc.citation.startPage150-
dc.citation.endPage161-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART001701847-
dc.identifier.wosid000306799300005-
dc.identifier.scopusid2-s2.0-84863817418-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusDEFORMABLE TEMPLATES-
dc.subject.keywordPlusFEATURE-EXTRACTION-
dc.subject.keywordPlusFACE DETECTION-
dc.subject.keywordPlusTRACKING-
dc.subject.keywordAuthorEye detection-
dc.subject.keywordAuthorhardware architecture-
dc.subject.keywordAuthorFPGA-
dc.subject.keywordAuthorimage processing-
dc.subject.keywordAuthorHDL-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE