Variation of residual stress in cubic boron nitride film caused by hydrogen addition during unbalanced magnetron sputtering
- Authors
- Kim, H-S.; Park, J-K.; Lee, W-S.; Baik, Y-J.
- Issue Date
- 2011-09-01
- Publisher
- ELSEVIER SCIENCE SA
- Citation
- THIN SOLID FILMS, v.519, no.22, pp.7871 - 7874
- Abstract
- The effect of hydrogen on compressive residual stress of cubic boron nitride (cBN) was investigated. The deposition was performed by unbalanced magnetron sputtering of a hexagonal boron nitride (hBN) target connected to radio-frequency electric power of 400W. Up to 2 sccm of hydrogen was added to a gas mixture of argon and nitrogen flowing at 9 and 1 sccm, respectively. The compressive stress rapidly decreased from 10.5 GPa to 3 GPa, with increasing hydrogen flow up to 1.0 sccm. The cBN fraction in these films, however, remained over 60%, with only a trivial decrease with increasing hydrogen. This reduction was discussed in terms of the relation between the penetration probabilities of hydrogen and argon ions into the film, which was main origin of compressive residual stress of the hBN layer. (C) 2011 Published by Elsevier B.V.
- Keywords
- THIN-FILMS; VAPOR-DEPOSITION; CONSTITUTION; DIAMOND; GROWTH; THIN-FILMS; VAPOR-DEPOSITION; CONSTITUTION; DIAMOND; GROWTH; Cubic boron nitride; Compressive residual stress; Hydrogen addition; Ar incorporation
- ISSN
- 0040-6090
- URI
- https://pubs.kist.re.kr/handle/201004/129997
- DOI
- 10.1016/j.tsf.2011.06.092
- Appears in Collections:
- KIST Article > 2011
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.