A Novel Seamless Elastic Scaffold for Vascular Tissue Engineering

Authors
Kim, Sang-HeonChung, EunnaKim, Sang-HoonJung, YoungmeeKim, Young HaKim, Soo Hyun
Issue Date
2010-03
Publisher
TAYLOR & FRANCIS LTD
Citation
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, v.21, no.3, pp.289 - 302
Abstract
Tissue-engineered vascular grafts have been investigated as a substitute for prosthetic vascular grafts. The current scaffolds have several limitations due to weak mechanical properties in withstanding the pressure of blood vessel. A gel-spinning molding device including three-separate drivers that make a cylindrical shaft turn on its axis, orbit, and concurrently move up and down was developed for preparing seamless fibrous tubular scaffolds for vascular grafts. A seamless double-layered tubular scaffold, which was composed of an outer fibrous network and inner porous layer, was fabricated by using the device for the spinning of poly(L-lactide-co-caprolactone) (PLCL, 50:50) solution as a gel state on a rotating cylindrical shaft that had been dip-coated with the mixture of PLCL solution and NaCl particles. A scaffold that had an inner layer fabricated with 30% salts, below 20 mu m in salt size, and more than 100 mu m in thickness, was found to be optimal from a blood leakage test. The burst pressures of the scaffolds were more than 900 mmHg. The scaffolds exhibited 550-670% elongation-at-break. The measured circumferential and longitudinal tensile strengths of the scaffolds were 3.62+/-0.68 and 2.64+/-0.41 MPa, respectively. The suture retention strength of the scaffold was measured to be 7.68+/-0.75 N. These mechanically strong and elastic properties of the newly developed scaffolds provide an important basis for blood vessel tissue engineering. (C) Koninklijke Brill NV, Leiden, 2010
Keywords
SMOOTH-MUSCLE-CELLS; PLCL SCAFFOLDS; BLOOD-VESSEL; IN-VITRO; GRAFT; RECONSTRUCTION; AUTOGRAFTS; ARTERIES; FIBERS; STRAIN; SMOOTH-MUSCLE-CELLS; PLCL SCAFFOLDS; BLOOD-VESSEL; IN-VITRO; GRAFT; RECONSTRUCTION; AUTOGRAFTS; ARTERIES; FIBERS; STRAIN; Vascular tissue engineering; poly(L-lactide-co-epsilon-caprolactone); gel-spinning molding technique; double-layered scaffold
ISSN
0920-5063
URI
https://pubs.kist.re.kr/handle/201004/131671
DOI
10.1163/156856209X415792
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE