Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice

Authors
Al-Abd, Ahmed M.Hong, Ki-YunSong, Soo-ChangKuh, Hyo-Jeong
Issue Date
2010-02-25
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF CONTROLLED RELEASE, v.142, no.1, pp.101 - 107
Abstract
A novel, thermosensitive hydrogel, poly(organophosphazene), is an injectable drug delivery system that transforms from sol to gel at body temperature. Doxorubicin (DOX) is a cytotoxic drug used for the treatment of several solid tumors. Due to its acute cardiac toxicity, DOX is a good candidate for local chemo-drug delivery system. In this study, we evaluated the pharmacokinetics of DOX (30 mg/kg) when given as an intratumoral injection using poly(organophosphazene) hydrogel in mice with human gastric tumor xenografts. DOX was formulated at 0.6% into a 10% hydrogel, and 40% and 90% of the dose was released in a sustained manner over 5 weeks in vitro and in vivo, respectively. The hydrogel mass was well retained over 7 weeks, and T-1/2 beta, was 1.8-fold longer than that of the solution, but the 2.2-fold lower C-max, (tumor), produced a similar AUC(tumor) and antitumor effect. However, solution caused a 2-fold higher systemic exposure (AUC(plasma)), which resulted in significant mortality due to acute cardiac toxicity. These data indicate that hydrogel formulation may have similar efficacy but lower systemic exposure than aqueous solution. In conclusion, poly(organophosphazene) showed adequate characteristics for local intratumoral delivery of DOX, including dose capacity, local retention, and minimal systemic spill-over. The safety and biocompatibility of poly(organophosphazene) should be further evaluated and its application should be extended to other anticancer agents. (C) 2009 Elsevier B.V. All rights reserved.
Keywords
DRUG-DELIVERY SYSTEMS; HYDROLYSIS-SENSITIVE POLY<(ORGANO)PHOSPHAZENES>; PEG-GRAFTED CHITOSAN; POLY(ORGANOPHOSPHAZENE) HYDROGELS; BIODEGRADABLE POLYMERS; ANTITUMOR-ACTIVITY; MALIGNANT GLIOMA; TOXICITY; CANCER; BIODISTRIBUTION; DRUG-DELIVERY SYSTEMS; HYDROLYSIS-SENSITIVE POLY<(ORGANO)PHOSPHAZENES>; PEG-GRAFTED CHITOSAN; POLY(ORGANOPHOSPHAZENE) HYDROGELS; BIODEGRADABLE POLYMERS; ANTITUMOR-ACTIVITY; MALIGNANT GLIOMA; TOXICITY; CANCER; BIODISTRIBUTION; Doxorubicin; Poly(organophosphazene); Pharmacokinetics; Drug delivery system; Solid tumors
ISSN
0168-3659
URI
https://pubs.kist.re.kr/handle/201004/131704
DOI
10.1016/j.jconrel.2009.10.003
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE