Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films
- Authors
- Roy, R. K.; Choi, H. W.; Yi, J. W.; Moon, M. -W.; Lee, K. -R.; Han, D. K.; Shin, J. H.; Kamijo, A.; Hasebe, T.
- Issue Date
- 2009-01
- Publisher
- ELSEVIER SCI LTD
- Citation
- ACTA BIOMATERIALIA, v.5, no.1, pp.249 - 256
- Abstract
- The hemocompatibility of plasma-treated, silicon-incorporated, diamond-like carbon (Si-DLC) films was investigated. Si-DLC films with a Si concentration of 2 at.% were prepared on Si (100) or Nitinol substrates using a capacitively coupled radiofrequency plasma-assisted chemical vapor deposition method using a mixed gas of benzene (C6H6) and diluted silane (SiH4:H-2 = 10:90). The Si-DLC films were then treated with O-2, CF4 or N-2 glow discharge for surface modification. The plasma treatment revealed an intimate relationship between the polar component of the surface energy and its hemocompatibility. All in vitro characterizations, i.e. protein absorption behavior, activated partial thromboplastin time measurement and platelet adhesion behavior, showed improved hemocompatibility of the N-2- or O-2-plasma-treated surfaces where the polar component of the surface energy was significantly increased. Si-O or Si-N surface bonds played an important role in improving hemocompatibility, as observed in a model experiment. These results support the importance of a negatively charged polar component of the surface in inhibiting fibrinogen adsorption and platelet adhesion. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
- Keywords
- PROTEIN ADSORPTION; AMORPHOUS-CARBON; DLC COATINGS; PLATELET ACTIVATION; ENERGY; BIOCOMPATIBILITY; THROMBOGENICITY; ATTACHMENT; INTERFACES; FIBRINOGEN; PROTEIN ADSORPTION; AMORPHOUS-CARBON; DLC COATINGS; PLATELET ACTIVATION; ENERGY; BIOCOMPATIBILITY; THROMBOGENICITY; ATTACHMENT; INTERFACES; FIBRINOGEN; Diamond-like carbon; Surface treatment; Hemocompatibility; Polar component; Platelet adhesion
- ISSN
- 1742-7061
- URI
- https://pubs.kist.re.kr/handle/201004/132847
- DOI
- 10.1016/j.actbio.2008.07.031
- Appears in Collections:
- KIST Article > 2009
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.