Doxorubicin Loaded pH-sensitive Micelle: Antitumoral Efficacy against Ovarian A2780/DOXR Tumor

Authors
Kim, DonginLee, Eun SeongPark, KyeongsoonKwon, Ick ChanBae, You Han
Issue Date
2008-09
Publisher
SPRINGER/PLENUM PUBLISHERS
Citation
PHARMACEUTICAL RESEARCH, v.25, no.9, pp.2074 - 2082
Abstract
Purpose. To evaluate pH-sensitive mixed micelles for multidrug resistant (MDR) ovarian tumor targeting and optical imaging of solid tumors. Method Doxorubicin (DOX) encapsulated pH-sensitive mixed micelles composed Of poly(L-histidine) (MW 5K)-b-PEG(MW 2K) and poly(L-lactic acid)(3K)-b-PEG (2K)-folate (PHSM-f) were prepared. Folate receptor-mediated endocytosis, drug uptake, endosomal disruption and cell viability were investigated at the cellular level. For in vivo tumor growth inhibition tests, multidrug resistant ovarian A2780/DOXR xenografted nude mice were used. Optical imaging was performed by using a Cy5.5 fluorescence dye-labeled mixed micelle system. Cy5.5 fluorescence intensity at the tumor site was measured in KB epidermoid xenografted nude mice. Results. In vitro cell viability and drug distribution in the cytoplasm demonstrated the significantly superior efficacy of PHSM-f to free DOX and a control sample of DOX loaded pH-insensitive micelle composed of poly(L-lactic acid)(3K)-b-PEG(2K)/poly(L-lactic acid)(3K)-b-PEG(2K)-folate (80/20 wt/wt%) (PHIM-f). The mechanisms of these results were proved by folate receptor mediated endocytosis of micelle and endosomal disruption function by it. In addition, the optical imaging demonstrated the future application of the diagnositic area. PHSM-f inhibited the growth of multidrug resistant ovarian tumors efficiently in mice, with minimum weight loss. Conclusions. The pH-sensitive mixed micelle system demonstrates effective antitumor efficacy against the multidrug resistant ovarian tumor A2780/DOXR.
Keywords
BLOCK-COPOLYMER MICELLES; DRUG-DELIVERY; POLYMERIC MICELLES; SUPRAMOLECULAR ASSEMBLIES; CANCER; FOLATE; DESIGN; RESISTANCE; RELEASE; BLOCK-COPOLYMER MICELLES; DRUG-DELIVERY; POLYMERIC MICELLES; SUPRAMOLECULAR ASSEMBLIES; CANCER; FOLATE; DESIGN; RESISTANCE; RELEASE; folic acid; micelle; multidrug resistance; ovarian cancer; poly(L-histidine)
ISSN
0724-8741
URI
https://pubs.kist.re.kr/handle/201004/133209
DOI
10.1007/s11095-008-9603-6
Appears in Collections:
KIST Article > 2008
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE