Pressure-induced hydration and order-disorder transition in a synthetic potassium gallosilicate zeolite with gismondine topology

Authors
Lee, YongjaeKim, Sun JinKao, Chi-ChangVogt, Thomas
Issue Date
2008-03-05
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.130, no.9, pp.2842 - 2850
Abstract
Two high-pressure phases of a potassium gallosilicate with a gismondine framework (K-GaSi-GIS) were characterized using Rietveld refinements of in-situ high-pressure, high-resolution synchrotron X-ray powder diffraction data. The observed response of the K-GaSi-GIS framework under hydrostatic pressure is a gradual flattening of the so-called "double crankshaft" structural chain units. At pressures below 1.0(1) GPa, additional water molecules from the hydrostatic pressure-transmitting medium are inserted into the potassium-water guest network ("pressure-induced hydration") resulting in a "super-hydrated" high-pressure phase I. As the flattening of the double crankshaft structural units in the GIS framework continues above 1.6 GPa, the ellipticity of the cross-linking 8-ring windows is reduced below a certain threshold, and a disordering of the potassium-water guest structure along the 8-ring channel, characteristic of a disordered high-pressure phase II, is observed. The concerted framework distortion and guest network disordering accommodates the increased hydration level while maintaining the seven-fold coordination environment of the potassium cations to framework oxygen atoms and water molecules. We have thus established the atomistic details of a guest-host order-disorder transition under pressure-induced hydration conditions in a zeolite with GIS framework and compared it to other zeolites during pressure-induced hydration. We find that the structural changes mediated by the extra-framework cations and their coordination environment under PIH conditions are at the core of these different mechanisms and are driving the changes in the ellipticity of pore openings, order-disorder and disorder-order transitions, and framework distortions.
Keywords
CRYSTAL-STRUCTURE; STRUCTURAL EVOLUTION; NEUTRON-DIFFRACTION; RIETVELD REFINEMENT; CATION MIGRATION; NATROLITE; EXCHANGE; COMPRESSIBILITY; BEHAVIOR; WATER; CRYSTAL-STRUCTURE; STRUCTURAL EVOLUTION; NEUTRON-DIFFRACTION; RIETVELD REFINEMENT; CATION MIGRATION; NATROLITE; EXCHANGE; COMPRESSIBILITY; BEHAVIOR; WATER; Gallosilicate; Zeolite; Gismondine; High-Pressure; Synchrotron
ISSN
0002-7863
URI
https://pubs.kist.re.kr/handle/201004/133658
DOI
10.1021/ja077443o
Appears in Collections:
KIST Article > 2008
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE