Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation

Authors
Ko, YGKim, YHPark, KDLee, HJLee, WKPark, HDKim, SHLee, GSAhn, DJ
Issue Date
2001-08
Publisher
ELSEVIER SCI LTD
Citation
BIOMATERIALS, v.22, no.15, pp.2115 - 2123
Abstract
A novel surface modification method has been developed to improve biocompatibility of polymeric biomaterials. This approach involves ozonation and then followed by graft polymerization with acrylates containing PEG, sulfonated PEG or by coupling of PEG derivatives. All the reactions were confirmed by ATR FT-IR and ESCA. The degree of ozonation measured by the iodide method was dependent on the ozone permeability of the polymers used. Surface hydrophilicity was investigated by measuring the contact angles. Ozonation itself yielded a slight increase in hydrophilicity and a decrease in platelet adhesion, but PEG immobilization showed a significant effect on surface hydrophilicity and platelet adhesion to confirm well-known PEG's passivity which minimize the adhesion of blood components on polymer surfaces. Both graft polymerization and coupling were effective for PU. In contrast, only grafting gave enough yields for PMMA and silicone. Platelet adhesion results demonstrated that all PEG modified surfaces adsorbed lower platelet adhesion than untreated or ozonated ones. Polymers coupled with sulfonated PEG exhibited the lowest platelet adhesion when compared with control and PEG coupled ones by virtue of the synergistic effect of non-adhesive PEG and negatively charged SO3 groups. This PEG or sulfonated PEG immobilization technology using ozonation is relatively simple for introducing uniform surface modification and therefore very useful for practical application of blood contacting medical devices. (C) 2001 Elsevier Science Ltd. All rights reserved.
Keywords
GRAFT-POLYMERIZATION; POLYETHYLENE SURFACE; CORONA DISCHARGE; ACRYLAMIDE; COPOLYMERIZATION; POLYPROPYLENE; POLYURETHANE; HYDROGELS; ADHESION; ESCA; GRAFT-POLYMERIZATION; POLYETHYLENE SURFACE; CORONA DISCHARGE; ACRYLAMIDE; COPOLYMERIZATION; POLYPROPYLENE; POLYURETHANE; HYDROGELS; ADHESION; ESCA; PEG/PEG-SO3; immobilization; ozone treatment; wettability; platelet adhesion
ISSN
0142-9612
URI
https://pubs.kist.re.kr/handle/201004/140298
DOI
10.1016/S0142-9612(00)00400-2
Appears in Collections:
KIST Article > 2001
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE