The recoiling of liquid droplets upon collision with solid surfaces

Authors
Kim, HYChun, JH
Issue Date
2001-03
Publisher
AMER INST PHYSICS
Citation
PHYSICS OF FLUIDS, v.13, no.3, pp.643 - 659
Abstract
Although the spreading behavior of liquid droplets impacting on solid surfaces has been extensively studied, the mechanism of recoiling which takes place after the droplet reaches its maximum spread diameter has not yet been fully understood. This paper reports the study of the recoiling behavior of different liquid droplets (water, ink, and silicone oil) on different solid surfaces (polycarbonate and silicon oxide). The droplet dynamics are experimentally studied using a high speed video system. Analytical methods using the variational principle, which were originated by Kendall and Rohsenow (MIT Technical Report 85694-100, 1978) and Bechtel [IBM J. Res. Dev. 25, 963 (1981)], are modified to account for wetting and viscous effects. In our model, an empirically determined dissipation factor is used to estimate the viscous friction. It is shown that the model closely predicts the experimental results obtained for the varying dynamic impact conditions and wetting characteristics. This study shows that droplets recoil fast and vigorously when the Ohnesorge number decreases or the Weber number increases. Droplets with a large equilibrium contact angle are also found to recoil faster. Here the Ohnesorge number scales the resisting force to the recoiling motion, and is shown to play the most important role in characterizing the recoiling motion. (C) 2001 American Institute of Physics.
Keywords
IMPACT; SOLIDIFICATION; IMPINGEMENT; IMPACT; SOLIDIFICATION; IMPINGEMENT; droplets
ISSN
1070-6631
URI
https://pubs.kist.re.kr/handle/201004/140669
DOI
10.1063/1.1344183
Appears in Collections:
KIST Article > 2001
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE