Study on dynamic separation of silica slurry using a rotating membrane filter: 2. Modelling of cake formation

Authors
Choi, CKPark, JYPark, WCKim, JJ
Issue Date
1999-05-07
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF MEMBRANE SCIENCE, v.157, no.2, pp.177 - 187
Abstract
In microfiltration the transport, deposition and removal of particles control cake formation on a filter. In this connection a new empirical model on cake formation, based on the wall shear stress, was tested here in comparison with experiments of fine silica slurry under Taylor-vortex flow. This model on a constant pressure operation expresses the deposition process for particles as two first-order steps in series of mass transfer and adhesion, and their removal process as a linear relation to the wall shear stress. The correlation resulting from fitting to experimental data represented the present cake resistances reasonably well. This study complements the work of Park et al. [J.Y. Park, C.K, Choi, J.J. Kim, A study on dynamic separation of silica slurry using a rotating membrane filter: 1. Experiments and filtrate fluxes, J. Membr, Sci. 97 (1994) 263] and it will also be helpful in analyzing fouling in heat exchangers. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
Keywords
FLOW FILTRATION; DEPOSITION; MICROFILTRATION; FLUX; FLOW FILTRATION; DEPOSITION; MICROFILTRATION; FLUX; microfiltration; rotating membrane filter; cake formation; Couette-Taylor flow; wall shear stress
ISSN
0376-7388
URI
https://pubs.kist.re.kr/handle/201004/142192
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE