Revealing the Hidden Role of Radical Scavengers: Unraveling the Key to Tailoring the Formation of the hcp PdHx Phase in Graphene Liquid Cells

Authors
Hong, JaeyoungKim, JuyoungBae, Jee HwanJin, HaneulLee, Su KyongLee, Kyu HyoungLee, Young-SuChun, Dong Won
Issue Date
2024-02
Publisher
John Wiley & Sons Ltd.
Citation
Advanced Functional Materials
Abstract
Radiation chemistry enables the synthesis of colloidal nanoparticles without chemical reducing agents, yielding metal nanoparticles via simple and direct processes. Aliphatic alcohols are widely used to promote the formation of nanoparticles in radiolytic synthesis by inhibiting the reoxidation of these metal nanoparticles by scavenging hydroxyl radicals. However, the role of the scavenger has been limited to simply accelerating the formation of the nanoparticles without altering their nature. Herein, the role of radical scavengers is investigated in determining the type of metal nanoparticles formed, with the scavenger concentration playing a crucial role. It is found that the addition of isopropyl alcohol controls the formation of hexagonal close-packed (hcp) palladium hydride (PdHx) nanoparticles that are previously synthesized for the first time via radiation chemistry by increasing the concentrations of hydrated electrons and hydrogen radicals. This discovery reveals a more active role for radical scavengers in radiolytic syntheses, and this strategy can be used for the cost-effective mass production of hcp PdHx nanoparticles.
Keywords
RADIOLYTIC SYNTHESIS; NANOPARTICLES; NUCLEATION; CLUSTERS; HYDRIDE; GROWTH; IRRADIATION; radical scavenger; radiolysis product; graphene liquid cell; hcp palladium hydride; in situ TEM; radiation chemistry
ISSN
1616-301X
URI
https://pubs.kist.re.kr/handle/201004/149708
DOI
10.1002/adfm.202311293
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE