Revealing the Hidden Role of Radical Scavengers: Unraveling the Key to Tailoring the Formation of the hcp PdHx Phase in Graphene Liquid Cells
- Authors
- Hong, Jaeyoung; Kim, Juyoung; Bae, Jee Hwan; Jin, Haneul; Lee, Su Kyong; Lee, Kyu Hyoung; Lee, Young-Su; Chun, Dong Won
- Issue Date
- 2024-06
- Publisher
- John Wiley & Sons Ltd.
- Citation
- Advanced Functional Materials, v.34, no.23
- Abstract
- Radiation chemistry enables the synthesis of colloidal nanoparticles without chemical reducing agents, yielding metal nanoparticles via simple and direct processes. Aliphatic alcohols are widely used to promote the formation of nanoparticles in radiolytic synthesis by inhibiting the reoxidation of these metal nanoparticles by scavenging hydroxyl radicals. However, the role of the scavenger has been limited to simply accelerating the formation of the nanoparticles without altering their nature. Herein, the role of radical scavengers is investigated in determining the type of metal nanoparticles formed, with the scavenger concentration playing a crucial role. It is found that the addition of isopropyl alcohol controls the formation of hexagonal close-packed (hcp) palladium hydride (PdHx) nanoparticles that are previously synthesized for the first time via radiation chemistry by increasing the concentrations of hydrated electrons and hydrogen radicals. This discovery reveals a more active role for radical scavengers in radiolytic syntheses, and this strategy can be used for the cost-effective mass production of hcp PdHx nanoparticles.
- Keywords
- RADIOLYTIC SYNTHESIS; NANOPARTICLES; NUCLEATION; CLUSTERS; HYDRIDE; GROWTH; IRRADIATION; radical scavenger; radiolysis product; graphene liquid cell; hcp palladium hydride; in situ TEM; radiation chemistry
- ISSN
- 1616-301X
- URI
- https://pubs.kist.re.kr/handle/201004/149708
- DOI
- 10.1002/adfm.202311293
- Appears in Collections:
- KIST Article > 2024
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.