Development of an Injectable, ECM-Derivative Embolic for the Treatment of Cerebral Saccular Aneurysms

Authors
Kim, SeungilNowicki, Kamil W.Kohyama, KeishiMittal, AdityaYe, SanghoWang, KaiFujii, TaroRajesh, ShivbaskarCao, CatherineMantena, RohitBarbuto, MariannaJung, YoungmeeGross, Bradley A.Friedlander, Robert M.Wagner, William R.
Issue Date
2024-08
Publisher
American Chemical Society
Citation
Biomacromolecules, v.25, no.8, pp.4879 - 4890
Abstract
Cerebral aneurysms are a source of neurological morbidity and mortality, most often as a result of rupture. The most common approach for treating aneurysms involves endovascular embolization using nonbiodegradable medical devices, such as platinum coils. However, the need for retreatment due to the recanalization of coil-treated aneurysms highlights the importance of exploring alternative solutions. In this study, we propose an injectable extracellular matrix-derived embolic formed in situ by Michael addition of gelatin-thiol (Gel-SH) and hyaluronic acid vinyl sulfone (HA-VS) that may be delivered with a therapeutic agent (here, RADA-SP) to fill and remodel aneurysmal tissue without leaving behind permanent foreign bodies. The injectable embolic material demonstrated rapid gelation under physiological conditions, forming a highly porous structure and allowing for cellular infiltration. The injectable embolic exhibited thrombogenic behavior in vitro that was comparable to that of alginate injectables. Furthermore, in vivo studies in a murine carotid aneurysm model demonstrated the successful embolization of a saccular aneurysm and extensive cellular infiltration both with and without RADA-SP at 3 weeks, with some evidence of increased vascular or fibrosis markers with RADA-SP incorporation. The results indicate that the developed embolic has inherent potential for acutely filling cerebrovascular aneurysms and encouraging the cellular infiltration that would be necessary for stable, chronic remodeling.
Keywords
NEUROPEPTIDE SUBSTANCE-P; SMOOTH-MUSCLE-CELLS; ENDOVASCULAR TREATMENT; TNF-ALPHA; HYDROGELS; EMBOLIZATION; ANGIOGENESIS; COILS
ISSN
1525-7797
URI
https://pubs.kist.re.kr/handle/201004/150383
DOI
10.1021/acs.biomac.4c00321
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE