Melting phenomena of self-organized magnetic structures investigated by variational autoencoder
- Authors
- Yoona, H. G.; Leea, D. B.; Parka, S. M.; Choib, J. W.; Kwon, H. Y.; Won, C.
- Issue Date
- 2024-12
- Publisher
- Elsevier BV
- Citation
- Computer Physics Communications, v.305
- Abstract
- The phase transition phenomenon is an important research topic in various physical studies. However, it is difficult to define the order parameters in many complex systems involving self-organized structures. We propose a method to define order parameters using a variational autoencoder network. To demonstrate these capabilities, we trained a deep learning network with a dataset composed of spin configurations in a chiral magnetic system at various temperatures. It removes thermal fluctuations from the input data and leaves the remaining structural information with a spin magnitude. We define an order parameter with magnitude of output spins and compare the results with those of conventional analysis. The comparison indicates similar results. Using the order parameter, the thermal properties of the chiral magnetic system were investigated by varying the physical parameters and data size.
- Keywords
- PHASE-TRANSITIONS; FERROMAGNETISM; Spontaneous symmetry breaking; Phase transition; Order parameter; Critical temperature; Magnetism; Deep learning
- ISSN
- 0010-4655
- URI
- https://pubs.kist.re.kr/handle/201004/150521
- DOI
- 10.1016/j.cpc.2024.109329
- Appears in Collections:
- KIST Article > 2024
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.