Quaternarized chitosan nanofiber and ZIF aerogel composites for synergetic CO2 cycloaddition catalysis

Authors
Jung, Dan BeeSong, YounghanLee, Yu-RiCha, Min JunJeong, KeunhongChoi, JungkyuNa, JongbeomSeo, Jin YoungBaek, Kyung-Youl
Issue Date
2025-01
Publisher
Pergamon Press Ltd.
Citation
Carbohydrate Polymers, v.347
Abstract
Chemical upcycling of CO2, a major greenhouse gas, is attracting significant attention as a crucial strategy to combat global warming. The production of cyclic carbonate using metal-organic frameworks and their composites using nanofibrous carbohydrate polymer are promising ways to convert CO2 into valuable products. However, the current role of fibrous polymers is restricted to serving as physical substrates. This study seeks to expand the functionality of quaternarized chitosan nanofibers into synergistic catalysts in addition to their physical support role. A novel aerogel composite using Co/Zn-ZIF catalyst and quaternarized chitosan nanofiber (Q-CsNF+) was fabricated, and its hierarchical pore structure was extensively discussed. The obtained ZIF/QCsNF+ composite can synergistically convert epoxide to cyclic carbonate by acting as a co-catalyst. Moreover, we determined the predominant factors influencing catalytic activity in CO2 cycloaddition, especially by examining the interplay between CO2 affinity and co-catalyst effects. This research provides fundamental insight into developing CO2 cycloaddition catalysts using nature-derived fibrous polymers, opening new avenues for sustainable and efficient CO2 utilization.
Keywords
METAL-ORGANIC FRAMEWORK; CARBON-DIOXIDE; CHEMICAL FIXATION; CAPTURE; CONVERSION; EPOXIDES; MECHANISM; STORAGE; UIO-66; Carbon dioxide; Quaternarized chitosan nanofiber; Catalysis; Cyclic carbonate; And composites
ISSN
0144-8617
URI
https://pubs.kist.re.kr/handle/201004/150608
DOI
10.1016/j.carbpol.2024.122685
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE