Development of carbon nanotube synthesis mechanism based on effects of thermo-physical properties of carrier gases

Authors
Kumar, RajPark, Ji HongOh, Su RyunLee, AnnaJeon, Seung-YeolCho, Young ShikKim, Seung Min
Issue Date
2025-03
Publisher
Pergamon Press Ltd.
Citation
Carbon, v.234
Abstract
This study proposes a new synthesis mechanism of carbon nanotubes (CNTs) or carbon nanotube fibers (CNTFs) by a deep-injection floating catalyst chemical vapor deposition (DI-FCCVD), where a heavier inert gas, such as Ar, plays critical roles in simultaneously improving the crystallinity and productivity of CNTs or CNTFs. Heavier inert gases have lower thermal conductivities than lighter inert gases. Hence the addition of heavier inert gases in H2 ambient leads to the formation of a larger space at an exit of the injection tube with a lower temperature gradient to the synthesis temperature (1350 degrees C). This larger space allows carbon and catalyst precursors to fully decompose and prevents decomposed catalyst particles from agglomerating into too large catalyst particles, resulting in the significantly enhanced synthesis of CNTs or CNTFs.
Keywords
CHEMICAL-VAPOR-DEPOSITION; HIGH-QUALITY; FIBERS; GROWTH; WIRES; FLOW; Carbon nanotube fiber; Carrier gas; Thermo-physical properties; Carbon conversion; Production rate
ISSN
0008-6223
URI
https://pubs.kist.re.kr/handle/201004/151639
DOI
10.1016/j.carbon.2024.119929
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE