The neurobench framework for benchmarking neuromorphic computing algorithms and systems

Authors
Yik, Jasonvan den Berghe, Korneelden Blanken, DouweBouhadjar, YounesFabre, MaximeHueber, PaulKe, WeijieKhoei, Mina A.Kleyko, DenisPacik-Nelson, NoahPierro, AlessandroStratmann, PhilippSun, Pao-Sheng VincentTang, GuangzhiWang, ShenqiZhou, BiyanAhmed, Soikat HasanVathakkattil Joseph, GeorgeLeto, BenedettoMicheli, AuroraMishra, Anurag KumarLenz, GregorSun, TaoAhmed, ZerghamAkl, MahmoudAnderson, BrianAndreou, Andreas G.Bartolozzi, ChiaraBasu, ArindamBogdan, PetrutBohte, SanderBuckley, SoniaCauwenberghs, GertChicca, ElisabettaCorradi, Federicode Croon, GuidoDanielescu, AndreeaDaram, AnuragDavies, MikeDemirag, YigitEshraghian, JasonFischer, TobiasForest, JeremyFra, VittorioFurber, SteveFurlong, P. MichaelGilpin, WilliamGilra, AdityaGonzalez, Hector A.Indiveri, GiacomoJoshi, SiddharthKaria, VedantKhacef, LyesKnight, James C.Kriener, LauraKubendran, RajkumarKudithipudi, DhireeshaLiu, Shih-ChiiLiu, Yao-HongMa, HaoyuanManohar, RajitMargarit-Taule, Josep MariaMayr, ChristianMichmizos, KonstantinosMuir, Dylan R.Neftci, EmreNowotny, ThomasOttati, FabrizioOzcelikkale, AycaPanda, PriyadarshiniPark, JongkilPayvand, MelikaPehle, ChristianPetrovici, Mihai A.Posch, ChristophRenner, AlphaSandamirskaya, YuliaSchaefer, Clemens J. S.van Schaik, AndreSchemmel, JohannesSchmidgall, SamuelSchuman, CatherineSeo, Jae-sunSheik, SadiqueShrestha, Sumit BamSifalakis, ManolisSironi, AmosStewart, KennethStewart, MatthewStewart, Terrence C.Timcheck, JonathanTomen, NergisUrgese, GianvitoVerhelst, MarianVineyard, Craig M.Vogginger, BernhardYousefzadeh, AmirrezaZohora, Fatima TuzFrenkel, CharlotteReddi, Vijay Janapa
Issue Date
2025-02
Publisher
Nature Publishing Group
Citation
Nature Communications, v.16, no.1
Abstract
Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. This article presents NeuroBench, a benchmark framework for neuromorphic algorithms and systems, which is collaboratively designed from an open community of researchers across industry and academia. NeuroBench introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent and hardware-dependent settings. For latest project updates, visit the project website (neurobench.ai).
Keywords
NETWORK
URI
https://pubs.kist.re.kr/handle/201004/151897
DOI
10.1038/s41467-025-56739-4
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE