Dual-mode capacitive and localized surface plasmon resonance biosensor based on high-density Au nanoislands

Authors
Park, Jun-HeeKwon, SoonilKim, Moon-JuSong, ZhiquanBae, Hyung EunKang, Min-JungPyun, Jae-Chul
Issue Date
2025-06
Publisher
Pergamon Press Ltd.
Citation
Biosensors and Bioelectronics, v.277
Abstract
A capacitive-localized plasmon surface resonance (LSPR) dual-mode biosensor was developed using gold (Au) nanoislands modified on an Au interdigitated electrode (IDE). Au nanoislands were deposited through repeated thermal dewetting to increase their packing density and enhance sensor sensitivity. The response of the capacitive sensor to antibody-antigen interactions was optimized at 0.5 Hz in phosphate-buffered saline. Modification with Au nanoislands significantly reduced the effective electrode gap of the IDE, thereby enhancing the capacitive sensitivity, as evidenced by charge-transfer resistance and electric field analysis. Computer simulations confirmed that the effective electrode gap of a 5 mu m gap Au IDE with an 88.1% packing density of Au nanoislands decreased to 525.9 nm. The influence of Au nanoislands on LSPR was assessed through parameters such as lambda max, full width at half maximum, Q factor, and figure of merit. Additionally, the electric field enhancement factor, which indicates LSPR sensitivity, was calculated relative to the packing density of the Au nanoislands. The dual-mode sensor demonstrated efficacy in detecting Salmonella typhimurium, and the capacitive and LSPR sensor results showed a statistically significant correlation.
Keywords
INTERDIGITATED ELECTRODE; QUALITY FACTOR; GOLD; NANOPARTICLES; NANOSTRUCTURES; LSPR; SIZE; Capacitive-localized plasmon surface resonance; dual-mode; Au nanoisland; Packing density; Computer simulation
ISSN
0956-5663
URI
https://pubs.kist.re.kr/handle/201004/152081
DOI
10.1016/j.bios.2025.117274
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE