High-Speed and Enhanced Motion Control for a Wheeled-Legged Humanoid Robot Using a Two-Wheeled Inverted Pendulum With Roll Joint
- Authors
- An, Jaewoo; Kim, Jun Young; Lim, Myo-Taeg; Oh, Yonghwan
- Issue Date
- 2025-02
- Publisher
- Institute of Electrical and Electronics Engineers Inc.
- Citation
- IEEE Access, v.13, pp.33330 - 33340
- Abstract
- Wheeled-legged humanoid robots combine the mobility of wheels with the versatility of legs, offering significant advantages for locomotion. This paper proposes a hierarchical control framework for such robots, using a two-wheeled inverted pendulum with a roll joint (TWIP-R) as a template model. The framework integrates a motion planner and a whole-body controller. The motion planner utilizes a linear quadratic regulator (LQR) to dynamically adjust the zero moment point (ZMP), counteracting centrifugal forces and enabling stable, dynamic movements. Meanwhile, the whole-body controller (WBC), based on centroidal momentum, solves an optimization problem via quadratic programming (QP) while incorporating constraints from the rolling contact condition of the wheels and the dynamics of the humanoid robot. This framework generates optimized torque commands, enabling feasible and stable motion even in dynamic scenarios. Simulations featuring challenging maneuvers, such as slalom, demonstrate its ability to enhance stability and dynamic performance compared to traditional two-wheeled inverted pendulum (TWIP)-based methods by leveraging a dynamics model with roll motion. This framework demonstrates the potential of wheeled-legged humanoid robots to achieve dynamic, stable, and efficient locomotion in a variety of scenarios.
- Keywords
- MOBILE; Dynamics; Robots; Legged locomotion; Humanoid robots; Robot kinematics; Trajectory; Wheels; Vectors; Tracking; Actuators; Optimal control; two-wheeled inverted pendulum with roll joint; wheeled-legged humanoid robot; whole-body control
- URI
- https://pubs.kist.re.kr/handle/201004/152103
- DOI
- 10.1109/ACCESS.2025.3540107
- Appears in Collections:
- KIST Article > Others
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.