Full metadata record

DC Field Value Language
dc.contributor.authorYu, Subin-
dc.contributor.authorKang, Haeun-
dc.contributor.authorJee, Seohyeon-
dc.contributor.authorMoon, Wooyeon-
dc.contributor.authorJang, Dohyub-
dc.contributor.authorHuang, Wen-Tse-
dc.contributor.authorKim, Dongjun-
dc.contributor.authorChung, Kyungwha-
dc.contributor.authorWon, Dong-Il-
dc.contributor.authorPark, Jungwon-
dc.contributor.authorLiu, Ru-Shi-
dc.contributor.authorChoi, Kyungmin-
dc.contributor.authorKim, Sehoon-
dc.contributor.authorLee, Luke P.-
dc.contributor.authorKim, Dong Ha-
dc.date.accessioned2025-06-05T02:30:18Z-
dc.date.available2025-06-05T02:30:18Z-
dc.date.created2025-06-04-
dc.date.issued2025-05-
dc.identifier.issn2192-2640-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152567-
dc.description.abstractMetal-organic frameworks (MOFs) are widely used as substrates for creating single-atom catalysts due to their abundance of ligands, facilitating enzyme-like activity for biomedical applications. However, the high-temperature calcination process for single-atom catalysts limits economical, efficient, and large-scale synthesis. Here, a simple room-temperature synthesis of MOF-based single-atom and metal cluster catalysts is presented for tumor therapy. Fe/MOF is obtained through a coordination reaction at room temperature, while Au/MOF is synthesized from Au3+/MOF by introducing a reducing agent. Au/MOF effectively generates hydrogen peroxide (H2O2) from glucose, outperforming Au3+/MOF, and Fe/MOF subsequently produced hydroxyl radicals (center dot OH) by decomposing the generated H2O2via accelerated peroxidase-like activity in an acidic environment. In vitro and in vivo studies confirm a significantly enhanced cancer eradication ability compared to the PBS-treated group by combining cascade enzymatic activity, destruction of oxidative homeostasis, and excessive mitochondrial-mediated lipid peroxidation. The novel synthesis process of MOF-based metal single-atom catalysts establishes a new paradigm for fabricating effective enzyme-like nanomaterials for multimodal tumor therapy.-
dc.languageEnglish-
dc.publisherWiley-Blackwell-
dc.titleMOF-Based Single-Atom and Metal Cluster Catalysts by Room-Temperature Synthesis for Tumor Therapy-
dc.typeArticle-
dc.identifier.doi10.1002/adhm.202501058-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Healthcare Materials, v.15, no.10-
dc.citation.titleAdvanced Healthcare Materials-
dc.citation.volume15-
dc.citation.number10-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusORGANIC FRAMEWORKS-
dc.subject.keywordPlusFERROPTOSIS-
dc.subject.keywordPlusNANOZYMES-
dc.subject.keywordPlusASSAY-
dc.subject.keywordAuthorglucose oxidase mimic-
dc.subject.keywordAuthormetal-organic framework-
dc.subject.keywordAuthorperoxidase mimic-
dc.subject.keywordAuthorsingle atom catalyst-
dc.subject.keywordAuthortumor therapy-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE